IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v153y2021ics0167947320301535.html
   My bibliography  Save this article

An algorithm for non-parametric estimation in state–space models

Author

Listed:
  • Chau, Thi Tuyet Trang
  • Ailliot, Pierre
  • Monbet, Valérie

Abstract

State–space models are ubiquitous in the statistical literature since they provide a flexible and interpretable framework for analyzing many time series. In most practical applications, the state–space model is specified through a parametric model. However, the specification of such a parametric model may require an important modeling effort or may lead to models which are not flexible enough to reproduce all the complexity of the phenomenon of interest. In such situations, an appealing alternative consists in inferring the state–space model directly from the data using a non-parametric framework. The recent developments of powerful simulation techniques have permitted to improve the statistical inference for parametric state–space models. It is proposed to combine two of these techniques, namely the Stochastic Expectation–Maximization (SEM) algorithm and Sequential Monte Carlo (SMC) approaches, for non-parametric estimation in state–space models. The performance of the proposed algorithm is assessed though simulations on toy models and an application to environmental data is discussed.

Suggested Citation

  • Chau, Thi Tuyet Trang & Ailliot, Pierre & Monbet, Valérie, 2021. "An algorithm for non-parametric estimation in state–space models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
  • Handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301535
    DOI: 10.1016/j.csda.2020.107062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301535
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
    2. Young, D.S. & Hunter, D.R., 2010. "Mixtures of regressions with predictor-dependent mixing proportions," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2253-2266, October.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    4. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    5. Steven L. Brunton & Bingni W. Brunton & Joshua L. Proctor & Eurika Kaiser & J. Nathan Kutz, 2017. "Chaos as an intermittently forced linear system," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    6. Alberto Carrassi & Marc Bocquet & Laurent Bertino & Geir Evensen, 2018. "Data assimilation in the geosciences: An overview of methods, issues, and perspectives," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 9(5), September.
    7. Lee, Nayoung & Moon, Hyungsik Roger & Zhou, Qiankun, 2017. "Many IVs estimation of dynamic panel regression models with measurement error," Journal of Econometrics, Elsevier, vol. 200(2), pages 251-259.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
    2. Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
    3. Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
    4. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    5. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    6. Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011. "state-observation sampling and the econometrics of learning models," HEC Research Papers Series 947, HEC Paris.
    7. Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.
    8. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    9. Creal, Drew D. & Wu, Jing Cynthia, 2015. "Estimation of affine term structure models with spanned or unspanned stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 60-81.
    10. Bhattacharya, Arnab & Wilson, Simon P., 2018. "Sequential Bayesian inference for static parameters in dynamic state space models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 187-203.
    11. Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.
    12. Neil Shephard, 2013. "Martingale unobserved component models," Economics Papers 2013-W01, Economics Group, Nuffield College, University of Oxford.
    13. Manthos D. Delis & Pantelis Kazakis & Constantin Zopounidis, 2021. "Management Practices and Takeover Decisions," Working Papers 2021_10, Business School - Economics, University of Glasgow.
    14. Cheng, Jing & Chan, Ngai Hang, 2019. "Efficient inference for nonlinear state space models: An automatic sample size selection rule," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 143-154.
    15. Fredrik Lindsten & Randal Douc & Eric Moulines, 2015. "Uniform Ergodicity of the Particle Gibbs Sampler," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 775-797, September.
    16. Tsionas, Mike G., 2020. "On a model of environmental performance and technology gaps," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1141-1152.
    17. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    18. Gary Koop, 2012. "Using VARs and TVP-VARs with Many Macroeconomic Variables," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(3), pages 143-167, September.
    19. Carles Bret'o, 2013. "On idiosyncratic stochasticity of financial leverage effects," Papers 1312.5496, arXiv.org.
    20. Rutger Jan Lange, 2020. "Bellman filtering for state-space models," Tinbergen Institute Discussion Papers 20-052/III, Tinbergen Institute, revised 19 May 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.