IDEAS home Printed from https://ideas.repec.org/a/wly/wirecc/v9y2018i5ne535.html
   My bibliography  Save this article

Data assimilation in the geosciences: An overview of methods, issues, and perspectives

Author

Listed:
  • Alberto Carrassi
  • Marc Bocquet
  • Laurent Bertino
  • Geir Evensen

Abstract

We commonly refer to state estimation theory in geosciences as data assimilation (DA). This term encompasses the entire sequence of operations that, starting from the observations of a system, and from additional statistical and dynamical information (such as a dynamical evolution model), provides an estimate of its state. DA is standard practice in numerical weather prediction, but its application is becoming widespread in many other areas of climate, atmosphere, ocean, and environment modeling; in all circumstances where one intends to estimate the state of a large dynamical system based on limited information. While the complexity of DA, and of the methods thereof, stands on its interdisciplinary nature across statistics, dynamical systems, and numerical optimization, when applied to geosciences, an additional difficulty arises by the continually increasing sophistication of the environmental models. Thus, in spite of DA being nowadays ubiquitous in geosciences, it has so far remained a topic mostly reserved to experts. We aim this overview article at geoscientists with a background in mathematical and physical modeling, who are interested in the rapid development of DA and its growing domains of application in environmental science, but so far have not delved into its conceptual and methodological complexities. This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models

Suggested Citation

  • Alberto Carrassi & Marc Bocquet & Laurent Bertino & Geir Evensen, 2018. "Data assimilation in the geosciences: An overview of methods, issues, and perspectives," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 9(5), September.
  • Handle: RePEc:wly:wirecc:v:9:y:2018:i:5:n:e535
    DOI: 10.1002/wcc.535
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wcc.535
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wcc.535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mercedeh Taheri & Abdolmajid Mohammadian, 2022. "An Overview of Snow Water Equivalent: Methods, Challenges, and Future Outlook," Sustainability, MDPI, vol. 14(18), pages 1-45, September.
    2. Alexey Penenko & Evgeny Rusin, 2022. "Parallel Implementation of a Sensitivity Operator-Based Source Identification Algorithm for Distributed Memory Computers," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    3. Chau, Thi Tuyet Trang & Ailliot, Pierre & Monbet, Valérie, 2021. "An algorithm for non-parametric estimation in state–space models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:wirecc:v:9:y:2018:i:5:n:e535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1757-7799 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.