IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i5d10.1007_s00362-023-01503-3.html
   My bibliography  Save this article

Penalized likelihood inference for the finite mixture of Poisson distributions from capture-recapture data

Author

Listed:
  • Yang Liu

    (Soochow University)

  • Rong Kuang

    (East China Normal University)

  • Guanfu Liu

    (Shanghai University of International Business and Economics)

Abstract

In capture-recapture problems, when individuals are categorized into different groups and individuals within each group are suspected to be captured with equal probability, the finite mixture of Poisson distributions is commonly employed to address heterogeneity in capture probabilities. In this study, we propose a penalized likelihood estimation method to estimate population sizes and demonstrate that the penalized likelihood ratio statistic asymptotically follows a standard chi-square distribution. To detect the presence of heterogeneity, we introduce a retooled EM test statistic that asymptotically follows a mixture of chi-square distributions. Our numerical investigations reveal that the proposed maximum penalized likelihood estimator offers increased stability, while the penalized likelihood ratio interval estimator shows enhanced accuracy compared with existing approaches. By carefully selecting an adaptive tuning parameter, the EM test achieves a better balance between the type I error and power than the goodness-of-fit and AIC-based tests. Finally, we apply the proposed method to three real-life datasets: street prostitute data, H5N1 influenza data, and opiate user data.

Suggested Citation

  • Yang Liu & Rong Kuang & Guanfu Liu, 2024. "Penalized likelihood inference for the finite mixture of Poisson distributions from capture-recapture data," Statistical Papers, Springer, vol. 65(5), pages 2751-2773, July.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:5:d:10.1007_s00362-023-01503-3
    DOI: 10.1007/s00362-023-01503-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01503-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01503-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karlis, Dimitris, 2005. "EM Algorithm for Mixed Poisson and Other Discrete Distributions," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 3-24, May.
    2. Robert M. Dorazio & J. Andrew Royle, 2003. "Mixture Models for Estimating the Size of a Closed Population When Capture Rates Vary among Individuals," Biometrics, The International Biometric Society, vol. 59(2), pages 351-364, June.
    3. P. Li & J. Chen & P. Marriott, 2009. "Non-finite Fisher information and homogeneity: an EM approach," Biometrika, Biometrika Trust, vol. 96(2), pages 411-426.
    4. Marco Alfò & Dankmar Böhning & Irene Rocchetti, 2021. "Upper bound estimators of the population size based on ordinal models for capture‐recapture experiments," Biometrics, The International Biometric Society, vol. 77(1), pages 237-248, March.
    5. Xuan Mao, Chang, 2007. "Estimating population sizes for capture-recapture sampling with binomial mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5211-5219, July.
    6. Dankmar Böhning & Ekkehart Dietz & Ronny Kuhnert & Dieter Schön, 2005. "Mixture models for capture-recapture count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(1), pages 29-43, February.
    7. Wang, Ji-Ping Z. & Lindsay, Bruce G., 2005. "A Penalized Nonparametric Maximum Likelihood Approach to Species Richness Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 942-959, September.
    8. Ryan T. Godwin & Dankmar Böhning, 2017. "Estimation of the population size by using the one-inflated positive Poisson model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 425-448, February.
    9. Dankmar Böhning & Ronny Kuhnert, 2006. "Equivalence of Truncated Count Mixture Distributions and Mixtures of Truncated Count Distributions," Biometrics, The International Biometric Society, vol. 62(4), pages 1207-1215, December.
    10. Shirley Pledger, 2005. "The Performance of Mixture Models in Heterogeneous Closed Population Capture–Recapture," Biometrics, The International Biometric Society, vol. 61(3), pages 868-873, September.
    11. B. J. T. Morgan & M. S. Ridout, 2008. "A new mixture model for capture heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 433-446, September.
    12. Li, Pengfei & Chen, Jiahua, 2010. "Testing the Order of a Finite Mixture," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1084-1092.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orasa Anan & Dankmar Böhning & Antonello Maruotti, 2017. "Population size estimation and heterogeneity in capture–recapture data: a linear regression estimator based on the Conway–Maxwell–Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 49-79, March.
    2. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    3. Hannah Worthington & Rachel S. McCrea & Ruth King & Richard A. Griffiths, 2019. "Estimation of Population Size When Capture Probability Depends on Individual States," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 154-172, March.
    4. Hajo Holzmann & Axel Munk & Walter Zucchini, 2006. "On Identifiability in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 62(3), pages 934-936, September.
    5. Balabdaoui, Fadoua & Kulagina, Yulia, 2020. "Completely monotone distributions: Mixing, approximation and estimation of number of species," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    6. Kasahara Hiroyuki & Shimotsu Katsumi, 2012. "Testing the Number of Components in Finite Mixture Models," Global COE Hi-Stat Discussion Paper Series gd12-259, Institute of Economic Research, Hitotsubashi University.
    7. B. J. T. Morgan & M. S. Ridout, 2008. "A new mixture model for capture heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 433-446, September.
    8. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    9. Robert M. Dorazio & J. Andrew Royle, 2005. "Rejoinder to "The Performance of Mixture Models in Heterogeneous Closed Population Capture-Recapture"," Biometrics, The International Biometric Society, vol. 61(3), pages 874-876, September.
    10. Bagkavos, Dimitrios & Patil, Prakash N., 2023. "Goodness-of-fit testing for normal mixture densities," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    11. Shirley Pledger & Kenneth H. Pollock & James L. Norris, 2010. "Open Capture–Recapture Models with Heterogeneity: II. Jolly–Seber Model," Biometrics, The International Biometric Society, vol. 66(3), pages 883-890, September.
    12. Jiaying Gu & Roger Koenker & Stanislav Volgushev, 2017. "Testing for homogeneity in mixture models," CeMMAP working papers CWP39/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Hiroyuki Kasahara & Katsumi Shimotsu, 2017. "Testing the Order of Multivariate Normal Mixture Models," CIRJE F-Series CIRJE-F-1044, CIRJE, Faculty of Economics, University of Tokyo.
    14. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    15. Charnigo, Richard & Fan, Qian & Bittel, Douglas & Dai, Hongying, 2013. "Testing unilateral versus bilateral normal contamination," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 163-167.
    16. Marco Alfò & Dankmar Böhning & Irene Rocchetti, 2021. "Upper bound estimators of the population size based on ordinal models for capture‐recapture experiments," Biometrics, The International Biometric Society, vol. 77(1), pages 237-248, March.
    17. Richard Arnold & Yu Hayakawa & Paul Yip, 2010. "Capture–Recapture Estimation Using Finite Mixtures of Arbitrary Dimension," Biometrics, The International Biometric Society, vol. 66(2), pages 644-655, June.
    18. Jiaying Gu & Roger Koenker & Stanislav Volgushev, 2017. "Testing for homogeneity in mixture models," CeMMAP working papers 39/17, Institute for Fiscal Studies.
    19. Chee, Chew-Seng & Wang, Yong, 2016. "Nonparametric estimation of species richness using discrete k-monotone distributions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 107-118.
    20. Dankmar Böhning & Alberto Vidal-Diez & Rattana Lerdsuwansri & Chukiat Viwatwongkasem & Mark Arnold, 2013. "A Generalization of Chao's Estimator for Covariate Information," Biometrics, The International Biometric Society, vol. 69(4), pages 1033-1042, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:5:d:10.1007_s00362-023-01503-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.