IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p1213-1225.html
   My bibliography  Save this article

Improving trial generalizability using observational studies

Author

Listed:
  • Dasom Lee
  • Shu Yang
  • Lin Dong
  • Xiaofei Wang
  • Donglin Zeng
  • Jianwen Cai

Abstract

Complementary features of randomized controlled trials (RCTs) and observational studies (OSs) can be used jointly to estimate the average treatment effect of a target population. We propose a calibration weighting estimator that enforces the covariate balance between the RCT and OS, therefore improving the trial‐based estimator's generalizability. Exploiting semiparametric efficiency theory, we propose a doubly robust augmented calibration weighting estimator that achieves the efficiency bound derived under the identification assumptions. A nonparametric sieve method is provided as an alternative to the parametric approach, which enables the robust approximation of the nuisance functions and data‐adaptive selection of outcome predictors for calibration. We establish asymptotic results and confirm the finite sample performances of the proposed estimators by simulation experiments and an application on the estimation of the treatment effect of adjuvant chemotherapy for early‐stage non‐small‐cell lung patients after surgery.

Suggested Citation

  • Dasom Lee & Shu Yang & Lin Dong & Xiaofei Wang & Donglin Zeng & Jianwen Cai, 2023. "Improving trial generalizability using observational studies," Biometrics, The International Biometric Society, vol. 79(2), pages 1213-1225, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1213-1225
    DOI: 10.1111/biom.13609
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13609
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ashley L. Buchanan & Michael G. Hudgens & Stephen R. Cole & Katie R. Mollan & Paul E. Sax & Eric S. Daar & Adaora A. Adimora & Joseph J. Eron & Michael J. Mugavero, 2018. "Generalizing evidence from randomized trials using inverse probability of sampling weights," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1193-1209, October.
    2. Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
    3. José R. Zubizarreta, 2015. "Stable Weights that Balance Covariates for Estimation With Incomplete Outcome Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 910-922, September.
    4. Z Tan, 2020. "Regularized calibrated estimation of propensity scores with model misspecification and high-dimensional data," Biometrika, Biometrika Trust, vol. 107(1), pages 137-158.
    5. Shu Yang & Jae Kwang Kim & Rui Song, 2020. "Doubly robust inference when combining probability and non‐probability samples with high dimensional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(2), pages 445-465, April.
    6. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    7. Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(1), pages 25-46, January.
    8. Yixin Wang & Jose R Zubizarreta, 2020. "Minimal dispersion approximately balancing weights: asymptotic properties and practical considerations," Biometrika, Biometrika Trust, vol. 107(1), pages 93-105.
    9. Yang Ning & Peng Sida & Kosuke Imai, 2020. "Robust estimation of causal effects via a high-dimensional covariate balancing propensity score," Biometrika, Biometrika Trust, vol. 107(3), pages 533-554.
    10. Johnson, Brent A. & Lin, D.Y. & Zeng, Donglin, 2008. "Penalized Estimating Functions and Variable Selection in Semiparametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 672-680, June.
    11. S Yang & P Ding, 2018. "Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity scores," Biometrika, Biometrika Trust, vol. 105(2), pages 487-493.
    12. Jing Qin & Biao Zhang, 2007. "Empirical‐likelihood‐based inference in missing response problems and its application in observational studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 101-122, February.
    13. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    14. Kara E. Rudolph & Mark J. Laan, 2017. "Robust estimation of encouragement design intervention effects transported across sites," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1509-1525, November.
    15. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    16. David M. Phillippo & Anthony E. Ades & Sofia Dias & Stephen Palmer & Keith R. Abrams & Nicky J. Welton, 2018. "Methods for Population-Adjusted Indirect Comparisons in Health Technology Appraisal," Medical Decision Making, , vol. 38(2), pages 200-211, February.
    17. Elizabeth A. Stuart & Stephen R. Cole & Catherine P. Bradshaw & Philip J. Leaf, 2011. "The use of propensity scores to assess the generalizability of results from randomized trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 369-386, April.
    18. Erin Hartman & Richard Grieve & Roland Ramsahai & Jasjeet S. Sekhon, 2015. "From sample average treatment effect to population average treatment effect on the treated: combining experimental with observational studies to estimate population treatment effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 757-778, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ting & Shi, Chengchun & Wen, Qianglin & Sui, Yang & Qin, Yongli & Lai, Chunbo & Zhu, Hongtu, 2024. "Combining experimental and historical data for policy evaluation," LSE Research Online Documents on Economics 125588, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    2. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    3. Rui Chen & Guanhua Chen & Menggang Yu, 2023. "Entropy balancing for causal generalization with target sample summary information," Biometrics, The International Biometric Society, vol. 79(4), pages 3179-3190, December.
    4. Benjamin Lu & Eli Ben-Michael & Avi Feller & Luke Miratrix, 2023. "Is It Who You Are or Where You Are? Accounting for Compositional Differences in Cross-Site Treatment Effect Variation," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 420-453, August.
    5. Sean Yiu & Li Su, 2022. "Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models," Biometrics, The International Biometric Society, vol. 78(1), pages 115-127, March.
    6. María de los Angeles Resa & José R. Zubizarreta, 2020. "Direct and stable weight adjustment in non‐experimental studies with multivalued treatments: analysis of the effect of an earthquake on post‐traumatic stress," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1387-1410, October.
    7. Zongwu Cai & Ying Fang & Ming Lin & Yaqian Wu, 2024. "Estimating Counterfactual Distribution Functions via Optimal Distribution Balancing with Applications," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202415, University of Kansas, Department of Economics.
    8. Vahe Avagyan & Stijn Vansteelandt, 2021. "Stable inverse probability weighting estimation for longitudinal studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1046-1067, September.
    9. Xinyu Li & Wang Miao & Fang Lu & Xiao‐Hua Zhou, 2023. "Improving efficiency of inference in clinical trials with external control data," Biometrics, The International Biometric Society, vol. 79(1), pages 394-403, March.
    10. Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
    11. Fan Li & Ashley L. Buchanan & Stephen R. Cole, 2022. "Generalizing trial evidence to target populations in non‐nested designs: Applications to AIDS clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 669-697, June.
    12. Kuanhao Jiang & Rajarshi Mukherjee & Subhabrata Sen & Pragya Sur, 2022. "A New Central Limit Theorem for the Augmented IPW Estimator: Variance Inflation, Cross-Fit Covariance and Beyond," Papers 2205.10198, arXiv.org, revised Oct 2022.
    13. Dmitry Arkhangelsky & David Hirshberg, 2023. "Large-Sample Properties of the Synthetic Control Method under Selection on Unobservables," Papers 2311.13575, arXiv.org, revised Dec 2023.
    14. Zhang, Xiaoke & Xue, Wu & Wang, Qiyue, 2021. "Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    15. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
    16. Sean Yiu & Li Su, 2018. "Covariate association eliminating weights: a unified weighting framework for causal effect estimation," Biometrika, Biometrika Trust, vol. 105(3), pages 709-722.
    17. Martin Cousineau & Vedat Verter & Susan A. Murphy & Joelle Pineau, 2022. "Estimating causal effects with optimization-based methods: A review and empirical comparison," Papers 2203.00097, arXiv.org.
    18. Michael Zimmert, 2018. "The Finite Sample Performance of Treatment Effects Estimators based on the Lasso," Papers 1805.05067, arXiv.org.
    19. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    20. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1213-1225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.