IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v143y2020ics0167947319301963.html
   My bibliography  Save this article

Data-cloning SMC2: A global optimizer for maximum likelihood estimation of latent variable models

Author

Listed:
  • Duan, Jin-Chuan
  • Fulop, Andras
  • Hsieh, Yu-Wei

Abstract

A data-cloning SMC2 algorithm is proposed as a general-purpose, global optimization routine for the maximum likelihood estimation of models with latent variables. In the SMC2 phase, the method first marginalizes out the latent variable(s) by applying one layer of SMC at a fixed parameter value and then searches for the optimal parameters through another layer of SMC. The data-cloning phase is deployed to ensure global convergence by dampening multi-modality and to reduce the Monte Carlo error associated with SMC. This new method has broad applicability and is massively parallelizable through leveraging modern multi-core CPU or GPU computing.

Suggested Citation

  • Duan, Jin-Chuan & Fulop, Andras & Hsieh, Yu-Wei, 2020. "Data-cloning SMC2: A global optimizer for maximum likelihood estimation of latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:csdana:v:143:y:2020:i:c:s0167947319301963
    DOI: 10.1016/j.csda.2019.106841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319301963
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.106841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Walter R. Gilks & Carlo Berzuini, 2001. "Following a moving target—Monte Carlo inference for dynamic Bayesian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 127-146.
    3. Fulop, Andras & Li, Junye, 2013. "Efficient learning via simulation: A marginalized resample-move approach," Journal of Econometrics, Elsevier, vol. 176(2), pages 146-161.
    4. Carlo Gaetan, 2003. "A multiple-imputation Metropolis version of the EM algorithm," Biometrika, Biometrika Trust, vol. 90(3), pages 643-654, September.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    6. Jin-Chuan Duan & Andras Fulop, 2015. "Density-Tempered Marginalized Sequential Monte Carlo Samplers," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 192-202, April.
    7. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    8. Lele, Subhash R. & Nadeem, Khurram & Schmuland, Byron, 2010. "Estimability and Likelihood Inference for Generalized Linear Mixed Models Using Data Cloning," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1617-1625.
    9. Mathieu Gerber & Nicolas Chopin, 2015. "Sequential quasi Monte Carlo," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 509-579, June.
    10. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    11. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    12. George Deligiannidis & Arnaud Doucet & Michael K. Pitt, 2018. "The correlated pseudomarginal method," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 839-870, November.
    13. Jacquier, Eric & Johannes, Michael & Polson, Nicholas, 2007. "MCMC maximum likelihood for latent state models," Journal of Econometrics, Elsevier, vol. 137(2), pages 615-640, April.
    14. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beirne, John & Villafuerte, James & Zhang, Bryan (ed.), 2022. "Fintech and COVID-19: Impacts, Challenges, and Policy Priorities for Asia," ADBI Books, Asian Development Bank Institute, number 29, Décembre.
    2. Pedro Chaim & Márcio Poletti Laurini, 2022. "Data Cloning Estimation and Identification of a Medium-Scale DSGE Model," Stats, MDPI, vol. 6(1), pages 1-13, December.
    3. Duan, Jin-Chuan, 2021. "Sharing Credit Data While Respecting Privacy—A Digital Platform for Fairer Financing of MSMEs," ADBI Working Papers 1280, Asian Development Bank Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fulop, Andras & Heng, Jeremy & Li, Junye & Liu, Hening, 2022. "Bayesian estimation of long-run risk models using sequential Monte Carlo," Journal of Econometrics, Elsevier, vol. 228(1), pages 62-84.
    2. Fulop, Andras & Li, Junye, 2019. "Bayesian estimation of dynamic asset pricing models with informative observations," Journal of Econometrics, Elsevier, vol. 209(1), pages 114-138.
    3. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    4. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    5. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
    6. Andras Fulop & Jeremy Heng & Junye Li, 2022. "Efficient Likelihood-based Estimation via Annealing for Dynamic Structural Macrofinance Models," Papers 2201.01094, arXiv.org.
    7. Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.
    8. Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
    9. Axel Finke & Ruth King & Alexandros Beskos & Petros Dellaportas, 2019. "Efficient Sequential Monte Carlo Algorithms for Integrated Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 204-224, June.
    10. Gunawan, David & Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc, 2019. "Subsampling Sequential Monte Carlo for Static Bayesian Models," Working Paper Series 371, Sveriges Riksbank (Central Bank of Sweden).
    11. Ajay Jasra & Kody Law & Carina Suciu, 2020. "Advanced Multilevel Monte Carlo Methods," International Statistical Review, International Statistical Institute, vol. 88(3), pages 548-579, December.
    12. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    13. Jianhua Wang & Jiaye Ge & Yuting Ma, 2018. "Urban Chinese Consumers’ Willingness to Pay for Pork with Certified Labels: A Discrete Choice Experiment," Sustainability, MDPI, vol. 10(3), pages 1-14, February.
    14. Illichmann, R. & Abdulai, A., 2014. "Analysis of Consumer Preferences and Wilingness-To-Pay for Organic Food Products in Germany," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 49, March.
    15. Scaccia, Luisa & Marcucci, Edoardo & Gatta, Valerio, 2023. "Prediction and confidence intervals of willingness-to-pay for mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 54-78.
    16. D Rigby & M Burton, 2003. "Capturing Preference Heterogeneity in Stated Choice Models: A Random Parameter Logit Model of the Demand for GM Food," Economics Discussion Paper Series 0319, Economics, The University of Manchester.
    17. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    18. Faure, Corinne & Guetlein, Marie-Charlotte & Schleich, Joachim & Tu, Gengyang & Whitmarsh, Lorraine & Whittle, Colin, 2022. "Household acceptability of energy efficiency policies in the European Union: Policy characteristics trade-offs and the role of trust in government and environmental identity," Ecological Economics, Elsevier, vol. 192(C).
    19. Meredith Fowlie, 2010. "Emissions Trading, Electricity Restructuring, and Investment in Pollution Abatement," American Economic Review, American Economic Association, vol. 100(3), pages 837-869, June.
    20. Mohammed H. Alemu & Søren Bøye Olsen & Suzanne E. Vedel & John Kinyuru & Kennedy O. Pambo, 2016. "Integrating sensory evaluations in incentivized discrete choice experiments to assess consumer demand for cricket flour buns in Kenya," IFRO Working Paper 2016/02, University of Copenhagen, Department of Food and Resource Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:143:y:2020:i:c:s0167947319301963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.