IDEAS home Printed from https://ideas.repec.org/p/ris/adbiwp/1280.html
   My bibliography  Save this paper

Sharing Credit Data While Respecting Privacy—A Digital Platform for Fairer Financing of MSMEs

Author

Listed:
  • Duan, Jin-Chuan

    (Asian Development Bank Institute)

Abstract

Lending institutions’ reluctance to lend to MSMEs or to offer them competitive interest rates stems from the relatively costly information acquisition for small loans. The central idea is to bridge the information gap between the demand and the supply side by creating a credit analytics sharing infrastructure through federated learning, which completely respects data privacy. Pooling credit information across multiple lending institutions, particularly rare default events, enables the construction of a more informative credit model for MSMEs, which can then serve as a common good among lenders. The technology also allows for lender-specific models, which in essence share the model’s parameters on the common prediction variables while differing in their respective alternative data fields. The lenders in the MSME space can work like a coopetition and continue to compete with their varying risk appetites, loan rates, and banking services. We use real MSME credit data to demonstrate the feasibility of the sharing technology and to study the impact of the COVID-19 pandemic via a portfolio that we assembled from four hypothetical banks operating in six ASEAN countries.

Suggested Citation

  • Duan, Jin-Chuan, 2021. "Sharing Credit Data While Respecting Privacy—A Digital Platform for Fairer Financing of MSMEs," ADBI Working Papers 1280, Asian Development Bank Institute.
  • Handle: RePEc:ris:adbiwp:1280
    as

    Download full text from publisher

    File URL: https://www.adb.org/sites/default/files/publication/727111/adbi-wp1280.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Duan, Jin-Chuan & Fulop, Andras & Hsieh, Yu-Wei, 2020. "Data-cloning SMC2: A global optimizer for maximum likelihood estimation of latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    3. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    4. Jin-Chuan Duan & Andras Fulop, 2015. "Density-Tempered Marginalized Sequential Monte Carlo Samplers," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 192-202, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    2. Beirne, John & Villafuerte, James & Zhang, Bryan (ed.), 2022. "Fintech and COVID-19: Impacts, Challenges, and Policy Priorities for Asia," ADBI Books, Asian Development Bank Institute, number 29, Décembre.
    3. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    4. Fulop, Andras & Heng, Jeremy & Li, Junye & Liu, Hening, 2022. "Bayesian estimation of long-run risk models using sequential Monte Carlo," Journal of Econometrics, Elsevier, vol. 228(1), pages 62-84.
    5. RMI staff article, 2016. "NUS-RMI Credit Research Initiative Technical Report Version: 2016 Update 1," Global Credit Review (GCR), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 49-132.
    6. Andras Fulop & Jeremy Heng & Junye Li, 2022. "Efficient Likelihood-based Estimation via Annealing for Dynamic Structural Macrofinance Models," Papers 2201.01094, arXiv.org.
    7. Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.
    8. Hoang Nguyen & Trong-Nghia Nguyen & Minh-Ngoc Tran, 2023. "A dynamic leverage stochastic volatility model," Applied Economics Letters, Taylor & Francis Journals, vol. 30(1), pages 97-102, January.
    9. Duan, Jin-Chuan & Fulop, Andras & Hsieh, Yu-Wei, 2020. "Data-cloning SMC2: A global optimizer for maximum likelihood estimation of latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    10. Fulop, Andras & Li, Junye, 2019. "Bayesian estimation of dynamic asset pricing models with informative observations," Journal of Econometrics, Elsevier, vol. 209(1), pages 114-138.
    11. Li, Dan & Clements, Adam & Drovandi, Christopher, 2021. "Efficient Bayesian estimation for GARCH-type models via Sequential Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 22-46.
    12. Fulop, Andras & Li, Junye, 2013. "Efficient learning via simulation: A marginalized resample-move approach," Journal of Econometrics, Elsevier, vol. 176(2), pages 146-161.
    13. Axel Finke & Ruth King & Alexandros Beskos & Petros Dellaportas, 2019. "Efficient Sequential Monte Carlo Algorithms for Integrated Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 204-224, June.
    14. Gunawan, David & Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc, 2019. "Subsampling Sequential Monte Carlo for Static Bayesian Models," Working Paper Series 371, Sveriges Riksbank (Central Bank of Sweden).
    15. Gady Jacoby & Chuan Liao & Jonathan A. Batten, 2007. "A Pure Test for the Elasticity of Yield Spreads," The Institute for International Integration Studies Discussion Paper Series iiisdp195, IIIS.
    16. ilya, gikhman, 2006. "Fixed-income instrument pricing," MPRA Paper 1449, University Library of Munich, Germany.
    17. Gordian Rättich & Kim Clark & Evi Hartmann, 2011. "Performance measurement and antecedents of early internationalizing firms: A systematic assessment," Working Papers 0031, College of Business, University of Texas at San Antonio.
    18. Gerardo Manzo & Antonio Picca, 2020. "The Impact of Sovereign Shocks," Management Science, INFORMS, vol. 66(7), pages 3113-3132, July.
    19. Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
    20. Neus, Werner, 2014. "Eigenkapitalnormen, Boni und Risikoanreize in Banken," Die Unternehmung - Swiss Journal of Business Research and Practice, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 68(2), pages 92-107.

    More about this item

    Keywords

    COVID-19; coopetition; alternative data; federated learning; default;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:adbiwp:1280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ADB Institute (email available below). General contact details of provider: https://edirc.repec.org/data/adbinjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.