IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v79y2017i3p859-876.html
   My bibliography  Save this article

Optimal designs for longitudinal and functional data

Author

Listed:
  • Hao Ji
  • Hans-Georg Müller

Abstract

No abstract is available for this item.

Suggested Citation

  • Hao Ji & Hans-Georg Müller, 2017. "Optimal designs for longitudinal and functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 859-876, June.
  • Handle: RePEc:bla:jorssb:v:79:y:2017:i:3:p:859-876
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.12192
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    2. A. Delaigle & P. Hall & N. Bathia, 2012. "Componentwise classification and clustering of functional data," Biometrika, Biometrika Trust, vol. 99(2), pages 299-313.
    3. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    4. Peter Hall & Hans‐Georg Müller & Fang Yao, 2008. "Modelling sparse generalized longitudinal observations with latent Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 703-723, September.
    5. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    6. F. Ferraty & P. Hall & P. Vieu, 2010. "Most-predictive design points for functional data predictors," Biometrika, Biometrika Trust, vol. 97(4), pages 807-824.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berrendero, José R. & Bueno-Larraz, Beatriz & Cuevas, Antonio, 2019. "An RKHS model for variable selection in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 25-45.
    2. Kao, Ming-Hung & Huang, Ping-Han, 2024. "Hybrid exact-approximate design approach for sparse functional data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    3. Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Rha, Hyungmin & Kao, Ming-Hung & Pan, Rong, 2020. "Design optimal sampling plans for functional regression models," Computational Statistics & Data Analysis, Elsevier, vol. 146(C).
    5. Park, So Young & Xiao, Luo & Willbur, Jayson D. & Staicu, Ana-Maria & Jumbe, N. L’ntshotsholé, 2018. "A joint design for functional data with application to scheduling ultrasound scans," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 101-114.
    6. Meihua Wu & Ana Diez†Roux & Trivellore E. Raghunathan & Brisa N. Sánchez, 2018. "FPCA†based method to select optimal sampling schedules that capture between†subject variability in longitudinal studies," Biometrics, The International Biometric Society, vol. 74(1), pages 229-238, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, So Young & Xiao, Luo & Willbur, Jayson D. & Staicu, Ana-Maria & Jumbe, N. L’ntshotsholé, 2018. "A joint design for functional data with application to scheduling ultrasound scans," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 101-114.
    2. Shuang Wu & Hans-Georg Müller, 2011. "Response-Adaptive Regression for Longitudinal Data," Biometrics, The International Biometric Society, vol. 67(3), pages 852-860, September.
    3. Marco Stefanucci & Laura M. Sangalli & Pierpaolo Brutti, 2018. "PCA‐based discrimination of partially observed functional data, with an application to AneuRisk65 data set," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 246-264, August.
    4. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    5. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    6. Mengfei Ran & Yihe Yang, 2022. "Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
    7. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    8. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    9. González-Rodríguez, Gil & Colubi, Ana, 2017. "On the consistency of bootstrap methods in separable Hilbert spaces," Econometrics and Statistics, Elsevier, vol. 1(C), pages 118-127.
    10. Berrendero, José R. & Bueno-Larraz, Beatriz & Cuevas, Antonio, 2019. "An RKHS model for variable selection in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 25-45.
    11. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    12. Geenens, Gery, 2015. "Moments, errors, asymptotic normality and large deviation principle in nonparametric functional regression," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 369-377.
    13. Fang, Xiaolei & Zhou, Rensheng & Gebraeel, Nagi, 2015. "An adaptive functional regression-based prognostic model for applications with missing data," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 266-274.
    14. Yu-Ru Su & Chong-Zhi Di & Li Hsu, 2017. "Hypothesis testing in functional linear models," Biometrics, The International Biometric Society, vol. 73(2), pages 551-561, June.
    15. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    16. Chen, Ziqi & Hu, Jianhua & Zhu, Hongtu, 2020. "Surface functional models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    17. Haocheng Li & John Staudenmayer & Raymond J. Carroll, 2014. "Hierarchical functional data with mixed continuous and binary measurements," Biometrics, The International Biometric Society, vol. 70(4), pages 802-811, December.
    18. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    19. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
    20. Gertheiss, Jan & Goldsmith, Jeff & Staicu, Ana-Maria, 2017. "A note on modeling sparse exponential-family functional response curves," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 46-52.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:79:y:2017:i:3:p:859-876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.