IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v113y2017icp441-456.html
   My bibliography  Save this article

Student Sliced Inverse Regression

Author

Listed:
  • Chiancone, Alessandro
  • Forbes, Florence
  • Girard, Stéphane

Abstract

Sliced Inverse Regression (SIR) has been extensively used to reduce the dimension of the predictor space before performing regression. SIR is originally a model free method but it has been shown to actually correspond to the maximum likelihood of an inverse regression model with Gaussian errors. This intrinsic Gaussianity of standard SIR may explain its high sensitivity to outliers as observed in a number of studies. To improve robustness, the inverse regression formulation of SIR is therefore extended to non-Gaussian errors with heavy-tailed distributions. Considering Student distributed errors it is shown that the inverse regression remains tractable via an Expectation–Maximization (EM) algorithm. The algorithm is outlined and tested in the presence of outliers, both in simulated and real data, showing improved results in comparison to a number of other existing approaches.

Suggested Citation

  • Chiancone, Alessandro & Forbes, Florence & Girard, Stéphane, 2017. "Student Sliced Inverse Regression," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 441-456.
  • Handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:441-456
    DOI: 10.1016/j.csda.2016.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316301852
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2015. "Robust inverse regression for dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 71-81.
    2. Benoît Liquet & Jérôme Saracco, 2012. "A graphical tool for selecting the number of slices and the dimension of the model in SIR and SAVE approaches," Computational Statistics, Springer, vol. 27(1), pages 103-125, March.
    3. Zhu, Lixing & Miao, Baiqi & Peng, Heng, 2006. "On Sliced Inverse Regression With High-Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 630-643, June.
    4. L. Barreda & A. Gannoun & Jérôme Saracco, 2007. "Some extensions of multivariate SIR," Post-Print hal-00153831, HAL.
    5. Coudret, R. & Girard, S. & Saracco, J., 2014. "A new sliced inverse regression method for multivariate response," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 285-299.
    6. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    7. Marie Chavent & Stéphane Girard & Vanessa Kuentz-Simonet & Benoit Liquet & Thi Nguyen & Jérôme Saracco, 2014. "A sliced inverse regression approach for data stream," Computational Statistics, Springer, vol. 29(5), pages 1129-1152, October.
    8. Zhou, Jianhui, 2009. "Robust dimension reduction based on canonical correlation," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 195-209, January.
    9. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, January.
    10. Barrios, M. Pilar & Velilla, Santiago, 2007. "A bootstrap method for assessing the dimension of a general regression problem," Statistics & Probability Letters, Elsevier, vol. 77(3), pages 247-255, February.
    11. Cook, R. Dennis & Forzani, Liliana M. & Tomassi, Diego R., 2011. "LDR: A Package for Likelihood-Based Sufficient Dimension Reduction," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i03).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bousebata, Meryem & Enjolras, Geoffroy & Girard, Stéphane, 2023. "Extreme partial least-squares," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    2. Girard, Stéphane & Lorenzo, Hadrien & Saracco, Jérôme, 2022. "Advanced topics in Sliced Inverse Regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Huiwen Wang & Zhichao Wang & Shanshan Wang, 2021. "Sliced inverse regression method for multivariate compositional data modeling," Statistical Papers, Springer, vol. 62(1), pages 361-393, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girard, Stéphane & Lorenzo, Hadrien & Saracco, Jérôme, 2022. "Advanced topics in Sliced Inverse Regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Coudret, R. & Girard, S. & Saracco, J., 2014. "A new sliced inverse regression method for multivariate response," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 285-299.
    3. Marie Chavent & Stéphane Girard & Vanessa Kuentz-Simonet & Benoit Liquet & Thi Nguyen & Jérôme Saracco, 2014. "A sliced inverse regression approach for data stream," Computational Statistics, Springer, vol. 29(5), pages 1129-1152, October.
    4. Stephen Babos & Andreas Artemiou, 2021. "Cumulative Median Estimation for Sufficient Dimension Reduction," Stats, MDPI, vol. 4(1), pages 1-8, February.
    5. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    6. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    7. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    8. Huiwen Wang & Zhichao Wang & Shanshan Wang, 2021. "Sliced inverse regression method for multivariate compositional data modeling," Statistical Papers, Springer, vol. 62(1), pages 361-393, February.
    9. Prendergast, Luke A. & Smith, Jodie A., 2022. "Influence functions for linear discriminant analysis: Sensitivity analysis and efficient influence diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    10. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    11. Andrea Bergesio & María Eugenia Szretter Noste & Víctor J. Yohai, 2021. "A robust proposal of estimation for the sufficient dimension reduction problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 758-783, September.
    12. Sabrina Duarte & Liliana Forzani & Pamela Llop & Rodrigo García Arancibia & Diego Tomassi, 2023. "Socioeconomic Index for Income and Poverty Prediction: A Sufficient Dimension Reduction Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(2), pages 318-346, June.
    13. Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2015. "Robust inverse regression for dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 71-81.
    14. Zhou, Jingke & Xu, Wangli & Zhu, Lixing, 2015. "Robust estimating equation-based sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 99-118.
    15. Yuan Xue & Xiangrong Yin, 2015. "Sufficient dimension folding for a functional of conditional distribution of matrix- or array-valued objects," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(2), pages 253-269, June.
    16. Zifang Guo & Lexin Li & Wenbin Lu & Bing Li, 2015. "Groupwise Dimension Reduction via Envelope Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1515-1527, December.
    17. Wang, Qin & Yin, Xiangrong, 2011. "Estimation of inverse mean: An orthogonal series approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1656-1664, April.
    18. Wei Luo, 2022. "On efficient dimension reduction with respect to the interaction between two response variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 269-294, April.
    19. Zeng, Bilin & Yu, Zhou & Wen, Xuerong Meggie, 2015. "A note on cumulative mean estimation," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 322-327.
    20. Xie, Chuanlong & Zhu, Lixing, 2020. "Generalized kernel-based inverse regression methods for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:441-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.