IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i1d10.1007_s00362-019-01093-z.html
   My bibliography  Save this article

Sliced inverse regression method for multivariate compositional data modeling

Author

Listed:
  • Huiwen Wang

    (Beihang University
    Beijing Advanced Innovation Center for Big Data and Brain Computing)

  • Zhichao Wang

    (Beihang University
    Beijing Key Laboratory of Emergence Support Simulation Technologies for City Operations)

  • Shanshan Wang

    (Beihang University
    Beijing Advanced Innovation Center for Big Data and Brain Computing)

Abstract

Compositional data modeling is of great practical importance, as exemplified by applications in economic and geochemical data analysis. In this study, we investigate the sliced inverse regression (SIR) procedure for multivariate compositional data with a scalar response. We can achieve dimension reduction for the original multivariate compositional data quickly and then conduct a regression on the dimensional-reduced compositions. It is documented that the proposed method is successful in detecting effective dimension reduction directions, which generalizes the theoretical framework of SIR to multivariate compositional data. Comprehensive simulation studies are conducted to evaluate the performance of the proposed SIR procedure and the simulation results show its feasibility and effectiveness. A real data application is finally used to illustrate the success of the proposed SIR-based method.

Suggested Citation

  • Huiwen Wang & Zhichao Wang & Shanshan Wang, 2021. "Sliced inverse regression method for multivariate compositional data modeling," Statistical Papers, Springer, vol. 62(1), pages 361-393, February.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:1:d:10.1007_s00362-019-01093-z
    DOI: 10.1007/s00362-019-01093-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-019-01093-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-019-01093-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Hron & P. Filzmoser & K. Thompson, 2012. "Linear regression with compositional explanatory variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1115-1128, November.
    2. Zhu, Lixing & Miao, Baiqi & Peng, Heng, 2006. "On Sliced Inverse Regression With High-Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 630-643, June.
    3. Benoît Liquet & Jérôme Saracco, 2012. "A graphical tool for selecting the number of slices and the dimension of the model in SIR and SAVE approaches," Computational Statistics, Springer, vol. 27(1), pages 103-125, March.
    4. Guochang Wang & Jianjun Zhou & Wuqing Wu & Min Chen, 2017. "Robust functional sliced inverse regression," Statistical Papers, Springer, vol. 58(1), pages 227-245, March.
    5. Francesca Bruno & Fedele Greco & Massimo Ventrucci, 2016. "Non-parametric regression on compositional covariates using Bayesian P-splines," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 75-88, March.
    6. Tzu-Tsung Wong, 2007. "Perfect aggregation of Bayesian analysis on compositional data," Statistical Papers, Springer, vol. 48(2), pages 265-282, April.
    7. J. L. Scealy & Patrice de Caritat & Eric C. Grunsky & Michail T. Tsagris & A. H. Welsh, 2015. "Robust Principal Component Analysis for Power Transformed Compositional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 136-148, March.
    8. Wei Lin & Pixu Shi & Rui Feng & Hongzhe Li, 2014. "Variable selection in regression with compositional covariates," Biometrika, Biometrika Trust, vol. 101(4), pages 785-797.
    9. Chiancone, Alessandro & Forbes, Florence & Girard, Stéphane, 2017. "Student Sliced Inverse Regression," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 441-456.
    10. Maya Shevlyakova & Stephan Morgenthaler, 2014. "Sliced inverse regression for survival data," Statistical Papers, Springer, vol. 55(1), pages 209-220, February.
    11. Francesca Bruno & Fedele Greco & Massimo Ventrucci, 2016. "Non-parametric regression on compositional covariates using Bayesian P-splines," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 75-88, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girard, Stéphane & Lorenzo, Hadrien & Saracco, Jérôme, 2022. "Advanced topics in Sliced Inverse Regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Haixiang Zhang & Jun Chen & Zhigang Li & Lei Liu, 2021. "Testing for Mediation Effect with Application to Human Microbiome Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 313-328, July.
    3. Mishra, Aditya & Müller, Christian L., 2022. "Robust regression with compositional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    4. Patrick L. Combettes & Christian L. Müller, 2021. "Regression Models for Compositional Data: General Log-Contrast Formulations, Proximal Optimization, and Microbiome Data Applications," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 217-242, July.
    5. Coudret, R. & Girard, S. & Saracco, J., 2014. "A new sliced inverse regression method for multivariate response," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 285-299.
    6. Jacob Fiksel & Scott Zeger & Abhirup Datta, 2022. "A transformation‐free linear regression for compositional outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(3), pages 974-987, September.
    7. Rieser, Christopher & Filzmoser, Peter, 2023. "Extending compositional data analysis from a graph signal processing perspective," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    8. Chiancone, Alessandro & Forbes, Florence & Girard, Stéphane, 2017. "Student Sliced Inverse Regression," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 441-456.
    9. Juan José Egozcue & Vera Pawlowsky-Glahn, 2019. "Compositional data: the sample space and its structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-638, September.
    10. Guochang Wang & Beiting Liang & Hansheng Wang & Baoxue Zhang & Baojian Xie, 2021. "Dimension reduction for functional regression with a binary response," Statistical Papers, Springer, vol. 62(1), pages 193-208, February.
    11. Jiajia Chen & Xiaoqin Zhang & Shengjia Li, 2017. "Multiple linear regression with compositional response and covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2270-2285, September.
    12. J. A. Martín-Fernández, 2021. "“Compositional Data Analysis in Practice” by Michael Greenacre Universitat Pompeu Fabra (Barcelona, Spain), Chapman and Hall/CRC, 2018," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 109-111, April.
    13. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    14. Marie Chavent & Stéphane Girard & Vanessa Kuentz-Simonet & Benoit Liquet & Thi Nguyen & Jérôme Saracco, 2014. "A sliced inverse regression approach for data stream," Computational Statistics, Springer, vol. 29(5), pages 1129-1152, October.
    15. Biyun Guo & Taiping Xie & M.V. Subrahmanyam, 2019. "The Impact of China’s Grain for Green Program on Rural Economy and Precipitation: A Case Study of Yan River Basin in the Loess Plateau," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    16. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2013. "Functional contour regression," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 1-13.
    17. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    18. Thomas-Agnan, Christine & Morais, Joanna, 2019. "Covariates impacts in compositional models and simplicial derivatives," TSE Working Papers 19-1057, Toulouse School of Economics (TSE).
    19. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    20. Chuanlong Xie & Lixing Zhu, 2018. "A minimum projected-distance test for parametric single-index Berkson models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 700-715, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:1:d:10.1007_s00362-019-01093-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.