IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v27y2012i1p103-125.html
   My bibliography  Save this article

A graphical tool for selecting the number of slices and the dimension of the model in SIR and SAVE approaches

Author

Listed:
  • Benoît Liquet
  • Jérôme Saracco

Abstract

No abstract is available for this item.

Suggested Citation

  • Benoît Liquet & Jérôme Saracco, 2012. "A graphical tool for selecting the number of slices and the dimension of the model in SIR and SAVE approaches," Computational Statistics, Springer, vol. 27(1), pages 103-125, March.
  • Handle: RePEc:spr:compst:v:27:y:2012:i:1:p:103-125
    DOI: 10.1007/s00180-011-0241-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-011-0241-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-011-0241-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    2. Luke A. Prendergast, 2007. "Implications of influence function analysis for sliced inverse regression and sliced average variance estimation," Biometrika, Biometrika Trust, vol. 94(3), pages 585-601.
    3. Zhu, Lixing & Miao, Baiqi & Peng, Heng, 2006. "On Sliced Inverse Regression With High-Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 630-643, June.
    4. Zhu, Li-Ping & Zhu, Li-Xing, 2007. "On kernel method for sliced average variance estimation," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 970-991, May.
    5. Aragon, Y. & Saracco, J., 1996. "Sliced Inverse Regression (SIR): An Appraisal of Small Sample Alternatives to Slicing," Papers 95.392, Toulouse - GREMAQ.
    6. Ye Z. & Weiss R.E., 2003. "Using the Bootstrap to Select One of a New Class of Dimension Reduction Methods," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 968-979, January.
    7. Zhu, Li-Xing & Ohtaki, Megu & Li, Yingxing, 2007. "On hybrid methods of inverse regression-based algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2621-2635, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Girard, Stéphane & Lorenzo, Hadrien & Saracco, Jérôme, 2022. "Advanced topics in Sliced Inverse Regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Huiwen Wang & Zhichao Wang & Shanshan Wang, 2021. "Sliced inverse regression method for multivariate compositional data modeling," Statistical Papers, Springer, vol. 62(1), pages 361-393, February.
    3. Marie Chavent & Stéphane Girard & Vanessa Kuentz-Simonet & Benoit Liquet & Thi Nguyen & Jérôme Saracco, 2014. "A sliced inverse regression approach for data stream," Computational Statistics, Springer, vol. 29(5), pages 1129-1152, October.
    4. Prendergast, Luke A. & Smith, Jodie A., 2022. "Influence functions for linear discriminant analysis: Sensitivity analysis and efficient influence diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Coudret, R. & Girard, S. & Saracco, J., 2014. "A new sliced inverse regression method for multivariate response," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 285-299.
    6. Chiancone, Alessandro & Forbes, Florence & Girard, Stéphane, 2017. "Student Sliced Inverse Regression," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 441-456.
    7. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coudret, R. & Girard, S. & Saracco, J., 2014. "A new sliced inverse regression method for multivariate response," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 285-299.
    2. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    3. Wang, Qin & Yin, Xiangrong, 2008. "A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4512-4520, May.
    4. Pircalabelu, Eugen & Artemiou, Andreas, 2021. "Graph informed sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    5. Zhou, Jingke & Xu, Wangli & Zhu, Lixing, 2015. "Robust estimating equation-based sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 99-118.
    6. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    7. Girard, Stéphane & Lorenzo, Hadrien & Saracco, Jérôme, 2022. "Advanced topics in Sliced Inverse Regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Wang, Qin & Yin, Xiangrong, 2011. "Estimation of inverse mean: An orthogonal series approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1656-1664, April.
    9. Zhu, Xuehu & Guo, Xu & Wang, Tao & Zhu, Lixing, 2020. "Dimensionality determination: A thresholding double ridge ratio approach," Computational Statistics & Data Analysis, Elsevier, vol. 146(C).
    10. Xie, Chuanlong & Zhu, Lixing, 2020. "Generalized kernel-based inverse regression methods for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    11. Zhu, Liping & Zhong, Wei, 2015. "Estimation and inference on central mean subspace for multivariate response data," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 68-83.
    12. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    13. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    14. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    15. Feng, Zhenghui & Zhu, Lixing, 2012. "An alternating determination–optimization approach for an additive multi-index model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1981-1993.
    16. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    17. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
    18. da Silva, Murilo & Sriram, T.N. & Ke, Yuan, 2023. "Dimension reduction in time series under the presence of conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    19. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    20. Fan, Guo-Liang & Xu, Hong-Xia & Liang, Han-Ying, 2019. "Dimension reduction estimation for central mean subspace with missing multivariate response," Journal of Multivariate Analysis, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:27:y:2012:i:1:p:103-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.