IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/543026.html
   My bibliography  Save this article

The Use of Fractional Order Derivative to Predict the Groundwater Flow

Author

Listed:
  • Abdon Atangana
  • Necdet Bildik

Abstract

The aim of this work was to convert the Thiem and the Theis groundwater flow equation to the time-fractional groundwater flow model. We first derived the analytical solution of the Theim time-fractional groundwater flow equation in terms of the generalized Wright function. We presented some properties of the Laplace-Carson transform. We derived the analytical solution of the Theis-time-fractional groundwater flow equation (TFGFE) via the Laplace-Carson transform method. We introduced the generalized exponential integral, as solution of the TFGFE. This solution is in perfect agreement with the data observed from the pumping test performed by the Institute for Groundwater Study on one of its borehole settled on the test site of the University of the Free State. The test consisted of the pumping of the borehole at the constant discharge rate Q and monitoring the piezometric head for 350 minutes.

Suggested Citation

  • Abdon Atangana & Necdet Bildik, 2013. "The Use of Fractional Order Derivative to Predict the Groundwater Flow," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-9, October.
  • Handle: RePEc:hin:jnlmpe:543026
    DOI: 10.1155/2013/543026
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/543026.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/543026.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/543026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alkahtani, B.S.T. & Atangana, A., 2016. "Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 539-546.
    2. Panda, Sumati Kumari & Vijayakumar, Velusamy, 2023. "Results on finite time stability of various fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:543026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.