IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v144y2021ics0960077921000576.html
   My bibliography  Save this article

Fold-flip and strong resonance bifurcations of a discrete-time mosquito model

Author

Listed:
  • Chen, Qiaoling
  • Teng, Zhidong
  • Wang, Feng

Abstract

In this paper we consider a two-dimensional discrete-time mosquito model, in which sterile mosquitoes are released into the wild at a nonlinear saturated rate. By reducing the discrete model into different normal forms, we prove that there exists a series of bifurcations of codimension two, including fold-flip bifurcation and strong resonance bifurcations (1:1, 1:2), when the values of two parameters vary. To verify theoretical analyses and confirm the chaotic behaviors of the discrete-time mosquito model, the bifurcation diagrams, phase portraits, time-series diagrams and maximum Lyapunov exponents diagrams are also showed for some special cases.

Suggested Citation

  • Chen, Qiaoling & Teng, Zhidong & Wang, Feng, 2021. "Fold-flip and strong resonance bifurcations of a discrete-time mosquito model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000576
    DOI: 10.1016/j.chaos.2021.110704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921000576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiaoling Chen & Zhidong Teng & Junli Liu & Feng Wang, 2020. "Codimension-2 Bifurcation Analysis and Control of a Discrete Mosquito Model with a Proportional Release Rate of Sterile Mosquitoes," Complexity, Hindawi, vol. 2020, pages 1-18, August.
    2. Hu, Zengyun & Teng, Zhidong & Zhang, Tailei & Zhou, Qiming & Chen, Xi, 2017. "Globally asymptotically stable analysis in a discrete time eco-epidemiological system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 20-31.
    3. Cui, Qianqian & Zhang, Qiang & Qiu, Zhipeng & Hu, Zengyun, 2016. "Complex dynamics of a discrete-time predator-prey system with Holling IV functional response," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 158-171.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Zengyun & Teng, Zhidong & Zhang, Tailei & Zhou, Qiming & Chen, Xi, 2017. "Globally asymptotically stable analysis in a discrete time eco-epidemiological system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 20-31.
    2. Blé, Gamaliel & Dela-Rosa, Miguel Angel, 2019. "Neimark–Sacker bifurcation in a tritrophic model with defense in the prey," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 124-139.
    3. Mondal, Chirodeep & Kesh, Dipak & Mukherjee, Debasis, 2023. "Global stability and bifurcation analysis of an infochemical induced three species discrete-time phytoplankton–zooplankton model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Banerjee, Ritwick & Das, Pritha & Mukherjee, Debasis, 2018. "Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-III functional response," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 240-248.
    5. Jalil Rashidinia & Mehri Sajjadian & Jorge Duarte & Cristina Januário & Nuno Martins, 2018. "On the Dynamical Complexity of a Seasonally Forced Discrete SIR Epidemic Model with a Constant Vaccination Strategy," Complexity, Hindawi, vol. 2018, pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.