IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i3p1263-1265.html
   My bibliography  Save this article

BPS states, dualities and determining the mass of elementary particles

Author

Listed:
  • El Naschie, M.S.

Abstract

BPS states, Montonen and Olive duality which is an extension of ‘tHooft–Polyakov’s symmetry to non-Abelian theories is shown to be consistent with the E-Infinity methodology for calculating the mass spectrum of high energy elementary particles.

Suggested Citation

  • El Naschie, M.S., 2009. "BPS states, dualities and determining the mass of elementary particles," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1263-1265.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:3:p:1263-1265
    DOI: 10.1016/j.chaos.2008.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908002476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Okaby, Ayman A., 2006. "Estimating the mass of the Higgs boson (mH) using the mass formula of E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 259-262.
    2. El Naschie, M.S., 2008. "High energy physics and the standard model from the exceptional Lie groups," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 1-17.
    3. El Naschie, M.S., 2006. "On the vital role played by the electron-volt units system in high energy physics and Mach’s principle of “Denkökonomie”," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1366-1371.
    4. El-Okaby, Ayman A., 2008. "The exceptional E-infinity theory holographic boundary, F-theory and the number of particles in the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1286-1291.
    5. El-Okaby, Ayman A., 2008. "Exceptional Lie groups, E-infinity theory and Higgs Boson," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1305-1317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Naschie, M.S., 2009. "The theory of Cantorian spacetime and high energy particle physics (an informal review)," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2635-2646.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Okaby, Ayman A., 2008. "Exceptional Lie groups, E-infinity theory and Higgs Boson," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1305-1317.
    2. El Naschie, M.S., 2008. "Deriving quarks confinement from the topology of quantum spacetime and heterotic string theory," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 193-195.
    3. El Naschie, M.S., 2009. "Arguments for the compactness and multiple connectivity of our cosmic spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2787-2789.
    4. Marek-Crnjac, L., 2008. "From Arthur Cayley via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and superstrings to Cantorian space–time," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1279-1288.
    5. El Naschie, M.S., 2008. "Mathematical foundation of E-Infinity via Coxeter and reflection groups," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1267-1268.
    6. El Naschie, M.S., 2008. "The internal dynamics of the exceptional Lie symmetry groups hierarchy and the coupling constants of unification," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1031-1038.
    7. El Naschie, M.S., 2008. "Asymptotic freedom and unification in a golden quantum field theory," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 521-525.
    8. Elokaby, Ayman, 2009. "Knot wormholes and the dimensional invariant of exceptional Lie groups and Stein space hierarchies," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1616-1618.
    9. El-Okaby, Ayman A., 2008. "The exceptional E-infinity theory holographic boundary, F-theory and the number of particles in the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1286-1291.
    10. El Naschie, M.S., 2008. "Removing spurious non-linearity in the structure of micro-spacetime and quantum field renormalization," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 60-64.
    11. El Naschie, M.S., 2009. "Higgs mechanism, quarks confinement and black holes as a Cantorian spacetime phase transition scenario," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 869-874.
    12. El Naschie, M.S., 2008. "P-Adic analysis and the transfinite E8 exceptional Lie symmetry group unification," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 612-614.
    13. El Naschie, M.S., 2008. "Fuzzy knot theory interpretation of Yang–Mills instantons and Witten’s 5-Brane model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1349-1354.
    14. ElOkaby, Ayman A., 2007. "A short review of the Higgs boson mass and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 14-25.
    15. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    16. El Naschie, M.S., 2008. "Towards a quantum field theory without Gribov copies and similar problems," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 936-938.
    17. El Naschie, M.S., 2008. "Eliminating gauge anomalies via a “point-less” fractal Yang–Mills theory," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1332-1335.
    18. Marek-Crnjac, L., 2007. "The maximum number of elementary particles in a super symmetric extension of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1631-1636.
    19. He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
    20. El Naschie, M.S., 2008. "Average exceptional Lie and Coxeter group hierarchies with special reference to the standard model of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 662-668.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:3:p:1263-1265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.