IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i5p1631-1636.html
   My bibliography  Save this article

The maximum number of elementary particles in a super symmetric extension of the standard model

Author

Listed:
  • Marek-Crnjac, L.

Abstract

In a series of papers over the last few years El Naschie addressed the question of the minimum and maximum number of elementary particles which a mathematically consistent and a physically meaning full extended standard model should contain. El Naschie’s minimum is 62 particles namely 60 believed to have been already discovered in addition to one Higgs boson and one graviton which are theoretically needed but are not jet experimentally conformed. By contrast the maximum number of 69 particles is although consistent with many quantum field theories based models as well as a classical result by Dyson may not be the only possibility. In the present work we show that a larger number of 72 or even 84 particles are easily shown to be consistent with super string theory and super symmetry. Our work consists of two parts. The first part is a reappraisal of El Naschie’s results and the second is a derivation of the proposed possibility of an upper bound of 72 or 84 elementary particles.

Suggested Citation

  • Marek-Crnjac, L., 2007. "The maximum number of elementary particles in a super symmetric extension of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1631-1636.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:5:p:1631-1636
    DOI: 10.1016/j.chaos.2006.09.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906008836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.09.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marek-Crnjac, L., 2006. "Different Higgs models and the number of Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 575-579.
    2. El Naschie, M.S., 2005. "Kähler-like manifolds, Weyl spinor particles and E-infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 665-670.
    3. El-Okaby, Ayman A., 2006. "Estimating the mass of the Higgs boson (mH) using the mass formula of E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 259-262.
    4. He, Ji-Huan, 2007. "The number of elementary particles in a fractal M-theory of 11.2360667977 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 346-351.
    5. El Naschie, M.S., 2005. "On a class of fuzzy Kähler-like manifolds," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 257-261.
    6. El Naschie, M.S., 2006. "An elementary proof for the nine missing particles of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1136-1138.
    7. El Naschie, M.S., 2006. "Holographic dimensional reduction: Center manifold theorem and E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 816-822.
    8. El Naschie, M.S., 2005. "Experimental and theoretical arguments for the number and the mass of the Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1091-1098.
    9. Naschie, M.S. El, 2005. "On the possibility of six gravity related particles in the standard model of high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1491-1496.
    10. El Naschie, M.S., 2005. "A note on various supersymmetric extensions of the standard model of high-energy particles and E-Infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 23(2), pages 683-688.
    11. El Naschie, M.S., 2005. "Spinorial content of the standard model, a different look at super-symmetry and fuzzy E-infinity hyper Kähler," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 303-311.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
    2. Marek-Crnjac, L., 2008. "Exceptional and semi simple Lie groups hierarchies and the maximum number of elementary particles beyond the standard model of high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 1-5.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2007. "E-Infinity theory and the Higgs field," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 782-786.
    2. El Naschie, M.S., 2007. "SU(5) grand unification in a transfinite form," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 370-374.
    3. El Naschie, M.S., 2008. "Bounds on the number of possible Higgs particles using grand unification and exceptional Lie groups," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 633-637.
    4. ElOkaby, Ayman A., 2007. "A short review of the Higgs boson mass and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 14-25.
    5. El-Okaby, Ayman A., 2008. "Exceptional Lie groups, E-infinity theory and Higgs Boson," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1305-1317.
    6. Gutiérrez García, J. & de Prada Vicente, M.A., 2007. "Further results on L-valued filters," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 162-172.
    7. Marek-Crnjac, L., 2006. "Different Higgs models and the number of Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 575-579.
    8. El Naschie, M.S., 2007. "The Fibonacci code behind super strings and P-Branes. An answer to M. Kaku’s fundamental question," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 537-547.
    9. Materassi, Massimo & Wernik, Andrzej W. & Yordanova, Emiliya, 2006. "Statistics in the p-model," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 642-655.
    10. He, Ji-Huan, 2007. "On the number of elementary particles in a resolution dependent fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1645-1648.
    11. El Naschie, M.S., 2005. "Determining the mass of the Higgs and the electroweak bosons," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 899-905.
    12. Falcón, Sergio & Plaza, Ángel, 2008. "On the 3-dimensional k-Fibonacci spirals," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 993-1003.
    13. El-Okaby, Ayman A., 2008. "The exceptional E-infinity theory holographic boundary, F-theory and the number of particles in the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1286-1291.
    14. El Naschie, M.S., 2008. "Exact non-perturbative derivation of gravity’s G¯4 fine structure constant, the mass of the Higgs and elementary black holes," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 346-359.
    15. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    16. Tanaka, Yosuke, 2007. "The mass spectrum of heavier hadrons and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 996-1007.
    17. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    18. El Naschie, M. Saladin, 2006. "Advanced prerequisite for E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 636-641.
    19. He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
    20. Falcón, Sergio & Plaza, Ángel, 2008. "The k-Fibonacci hyperbolic functions," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 409-420.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:5:p:1631-1636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.