IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i5p2635-2646.html
   My bibliography  Save this article

The theory of Cantorian spacetime and high energy particle physics (an informal review)

Author

Listed:
  • El Naschie, M.S.

Abstract

The paper gives a rather detailed introduction and up to date review of the main concepts and ideas upon which the theory of fractal-Cantorian spacetime is based.

Suggested Citation

  • El Naschie, M.S., 2009. "The theory of Cantorian spacetime and high energy particle physics (an informal review)," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2635-2646.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2635-2646
    DOI: 10.1016/j.chaos.2008.09.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908004608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.09.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crasmareanu, Mircea & Hreţcanu, Cristina-Elena, 2008. "Golden differential geometry," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1229-1238.
    2. El Naschie, M.S., 2008. "Yang–Mills instanton via exceptional Lie symmetry groups and E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 925-927.
    3. El Naschie, M.S., 2008. "Average exceptional Lie and Coxeter group hierarchies with special reference to the standard model of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 662-668.
    4. Elnaschie, M.S., 2008. "From classical gauge theory back to Weyl scaling via E-Infinity spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 980-985.
    5. El Naschie, M.S., 2008. "P-Adic unification of the fundamental forces and the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1011-1012.
    6. El Naschie, M.S., 2008. "The internal dynamics of the exceptional Lie symmetry groups hierarchy and the coupling constants of unification," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1031-1038.
    7. El Naschie, M.S., 2009. "An irreducibly simple derivation of the Hausdorff dimension of spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1902-1904.
    8. El Naschie, M.S., 2009. "Deriving the curvature of fractal-Cantorian spacetime from first principles," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2259-2261.
    9. El Naschie, M.S., 2008. "Quasi exceptional E12 Lie symmetry group with 685 dimensions, KAC-Moody algebra and E-infinity Cantorian spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 990-992.
    10. El Naschie, M.S., 2008. "Towards a quantum field theory without Gribov copies and similar problems," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 936-938.
    11. El Naschie, M.S., 2008. "Anomalies free E-infinity from von Neumann’s continuous geometry," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1318-1322.
    12. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    13. Marek-Crnjac, L., 2009. "A short history of fractal-Cantorian space-time," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2697-2705.
    14. Munroe, Ray, 2009. "Symplectic tiling, hypercolour and hyperflavor E12," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2135-2138.
    15. El Naschie, M.S., 2009. "The crystallographic space groups and Heterotic string theory," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2282-2284.
    16. El Naschie, M.S., 2009. "BPS states, dualities and determining the mass of elementary particles," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1263-1265.
    17. Munroe, Ray, 2009. "The MSSM, E8, Hyperflavor E12 and E∞ TOE’s compared and contrasted," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1557-1560.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek-Crnjac, L. & Iovane, G. & Nada, S.I. & Zhong, Ting, 2009. "The mathematical theory of finite and infinite dimensional topological spaces and its relevance to quantum gravity," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 1974-1979.
    2. Wu, Guo-Cheng & He, Ji-Huan, 2009. "On the Menger–Urysohn theory of Cantorian manifolds and transfinite dimensions in physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 781-783.
    3. Nada, S.I., 2009. "On the mathematical theory of transfinite dimensions and its application in physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 530-531.
    4. Nada, S.I., 2009. "Density manifolds, geometric measures and high-energy physics in transfinite dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1539-1541.
    5. Esmaeili, M. & Gulliver, T.A. & Kakhbod, A., 2009. "The Golden mean, Fibonacci matrices and partial weakly super-increasing sources," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 435-440.
    6. Marek-Crnjac, L., 2009. "Partially ordered sets, transfinite topology and the dimension of Cantorian-fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1796-1799.
    7. Iovane, G., 2009. "From Menger–Urysohn to Hausdorff dimensions in high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2338-2341.
    8. Elokaby, A., 2009. "On the deep connection between instantons and string states encoder in Klein’s modular space," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 303-305.
    9. Zhong, Ting, 2009. "From the numerics of dynamics to the dynamics of numerics and visa versa in high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1780-1783.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Naschie, M.S., 2009. "On zero-dimensional points curvature in the dynamics of Cantorian-fractal spacetime setting and high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2725-2732.
    2. El Naschie, M.S., 2009. "On the Witten–Duff five Branes model together with knots theory and E8E8 super strings in a single fractal spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2018-2021.
    3. El Naschie, M.S., 2009. "Knots and exceptional Lie groups as building blocks of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1799-1803.
    4. El Naschie, M.S., 2008. "Fuzzy knot theory interpretation of Yang–Mills instantons and Witten’s 5-Brane model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1349-1354.
    5. El Naschie, M.S., 2008. "Eliminating gauge anomalies via a “point-less” fractal Yang–Mills theory," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1332-1335.
    6. El Naschie, M.S., 2009. "The crystallographic space groups and Heterotic string theory," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2282-2284.
    7. El Naschie, M.S., 2008. "Anomalies free E-infinity from von Neumann’s continuous geometry," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1318-1322.
    8. Marek-Crnjac, L. & Iovane, G. & Nada, S.I. & Zhong, Ting, 2009. "The mathematical theory of finite and infinite dimensional topological spaces and its relevance to quantum gravity," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 1974-1979.
    9. Elokaby, A., 2009. "On the deep connection between instantons and string states encoder in Klein’s modular space," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 303-305.
    10. El Naschie, M.S., 2008. "An energy balance Eigenvalue equation for determining super strings dimensional hierarchy and coupling constants," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1283-1285.
    11. El Naschie, M.S., 2009. "Arguments for the compactness and multiple connectivity of our cosmic spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2787-2789.
    12. El Naschie, M.S., 2009. "Curvature, Lagrangian and holonomy of Cantorian-fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2163-2167.
    13. El Naschie, M.S., 2009. "Derivation of the Euler characteristic and the curvature of Cantorian-fractal spacetime using Nash Euclidean embedding and the universal Menger sponge," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2394-2398.
    14. El Naschie, M.S., 2009. "Kac–Moody exceptional E12 from simplictic tiling," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1569-1571.
    15. Marek-Crnjac, L., 2009. "Partially ordered sets, transfinite topology and the dimension of Cantorian-fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1796-1799.
    16. Li, Dengfeng & Wu, Guochang, 2009. "Construction of a class of Daubechies type wavelet bases," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 620-625.
    17. El Naschie, M.S., 2009. "Yang–Mills action as an eigenvalue problem in the theory of elasticity and some measure theoretical interpretation of ‘tHooft’s instanton," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1854-1856.
    18. El Naschie, M.S., 2008. "Towards a quantum field theory without Gribov copies and similar problems," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 936-938.
    19. El Naschie, M.S., 2008. "Fuzzy multi-instanton knots in the fabric of space–time and Dirac’s vacuum fluctuation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1260-1268.
    20. Nada, S.I. & Hamouda, E.H., 2009. "Fundamental group of dual graphs and applications to quantum space time," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 500-503.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2635-2646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.