IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i4p1914-1928.html
   My bibliography  Save this article

Robust exponential stability of interval Cohen–Grossberg neural networks with time-varying delays

Author

Listed:
  • Gao, Ming
  • Cui, Baotong

Abstract

In this paper, the problem of robust exponential stability for a class of interval Cohen–Grossberg neural networks with time-varying delays is investigated. Without assuming the boundedness and differentiability of the activation functions and any symmetry of interconnection matrices, some sufficient conditions for the existence, uniqueness, and global robust exponential stability of the equilibrium point are derived. Some comparisons between the results presented in this paper and the previous results admit that our results are the improvement and extension of the existed ones. The validity and performance of the new results are further illustrated by two simulation examples.

Suggested Citation

  • Gao, Ming & Cui, Baotong, 2009. "Robust exponential stability of interval Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1914-1928.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:4:p:1914-1928
    DOI: 10.1016/j.chaos.2007.09.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790700820X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.09.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arik, Sabri, 2005. "Global robust stability analysis of neural networks with discrete time delays," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1407-1414.
    2. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of Cohen–Grossberg neural networks with constant and variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1355-1361.
    3. Wu, Wei & Cui, Bao Tong, 2008. "Global robust exponential stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 747-754.
    4. Lou, Xuyang & Cui, Baotong, 2007. "Boundedness and exponential stability for nonautonomous cellular neural networks with reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 653-662.
    5. Cui, Bao Tong & Lou, Xu Yang, 2006. "Global asymptotic stability of BAM neural networks with distributed delays and reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1347-1354.
    6. Lou, Xuyang & Cui, Baotong, 2007. "Absolute exponential stability analysis of delayed bi-directional associative memory neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 695-701.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bao, Gang & Zeng, Zhigang, 2021. "Prescribed convergence analysis of recurrent neural networks with parameter variations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 858-870.
    2. Lan, Heng-you & Cui, Yi-Shun, 2009. "A neural network method for solving a system of linear variational inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1245-1252.
    3. Sheng, Li & Yang, Huizhong, 2009. "Robust stability of uncertain Markovian jumping Cohen–Grossberg neural networks with mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2120-2128.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Ming & Cui, Baotong, 2009. "Global robust stability of neural networks with multiple discrete delays and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1823-1834.
    2. Lou, Xuyang & Cui, Baotong, 2009. "Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2188-2197.
    3. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of Cohen–Grossberg neural networks with constant and variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1355-1361.
    4. Cui, Shihua & Zhao, Tao & Guo, Jie, 2009. "Global robust exponential stability for interval neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1567-1576.
    5. Sheng, Li & Yang, Huizhong, 2009. "Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2102-2113.
    6. Sheng, Li & Yang, Huizhong & Lou, Xuyang, 2009. "Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 930-939.
    7. Li, Zuoan & Li, Kelin, 2009. "Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 492-499.
    8. Sheng, Li & Yang, Huizhong, 2009. "Robust stability of uncertain Markovian jumping Cohen–Grossberg neural networks with mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2120-2128.
    9. Xu, Jian & Chung, Kwok-Wai, 2009. "Dynamics for a class of nonlinear systems with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 28-49.
    10. Sun, Yeong-Jeu, 2007. "Duality between observation and output feedback for linear systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 879-884.
    11. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    12. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    13. Zhang, Qianhong & Luo, Wei, 2009. "Global exponential stability of fuzzy BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2239-2245.
    14. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    15. Zhou, Xiaobing & Wu, Yue & Li, Yi & Yao, Xun, 2009. "Stability and Hopf bifurcation analysis on a two-neuron network with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1493-1505.
    16. Wang, Linshan & Zhang, Yan & Zhang, Zhe & Wang, Yangfan, 2009. "LMI-based approach for global exponential robust stability for reaction–diffusion uncertain neural networks with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 900-905.
    17. Chang, Wenting & Sang, Hong & Guo, Liangdong & Wu, Libing & Dimirovski, Georgi M., 2024. "Integrated L∞ anti-disturbance synchronization control for switched neural networks with unknown delays," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    18. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    19. Lou, Xuyang & Cui, Baotong & Wu, Wei, 2008. "On global exponential stability and existence of periodic solutions for BAM neural networks with distributed delays and reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 1044-1054.
    20. Ou, Ou, 2007. "Global robust exponential stability of delayed neural networks: An LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1742-1748.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:4:p:1914-1928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.