IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i1p492-499.html
   My bibliography  Save this article

Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms

Author

Listed:
  • Li, Zuoan
  • Li, Kelin

Abstract

In this paper, we investigate a class of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms. By employing the delay differential inequality with impulsive initial conditions and M-matrix theory, we find some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms. In particular, the estimate of the exponential converging index is also provided, which depends on the system parameters. An example is given to show the effectiveness of the results obtained here.

Suggested Citation

  • Li, Zuoan & Li, Kelin, 2009. "Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 492-499.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:1:p:492-499
    DOI: 10.1016/j.chaos.2009.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909000186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Bao Tong & Lou, Xu Yang, 2006. "Global asymptotic stability of BAM neural networks with distributed delays and reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1347-1354.
    2. Li, Kelin & Zhang, Xinhua & Li, Zuoan, 2009. "Global exponential stability of impulsive cellular neural networks with time-varying and distributed delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1427-1434.
    3. Lu, Junwei & Guo, Yiqian & Xu, Shengyuan, 2006. "Global asymptotic stability analysis for cellular neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 349-353.
    4. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2006. "Stability analysis for cellular neural networks with variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 331-336.
    5. Zhou, Qinghua & Wan, Li & Sun, Jianhua, 2007. "Exponential stability of reaction–diffusion generalized Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1713-1719.
    6. Li, Yongkun & Xing, Wenya & Lu, Linghong, 2006. "Existence and global exponential stability of periodic solution of a class of neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 437-445.
    7. Huang, Tingwen, 2007. "Exponential stability of delayed fuzzy cellular neural networks with diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 658-664.
    8. Wang, Jian & Lu, Jun Guo, 2008. "Global exponential stability of fuzzy cellular neural networks with delays and reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 878-885.
    9. Li, Yongkun, 2005. "Global exponential stability of BAM neural networks with delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 279-285.
    10. Lu, Jun Guo & Lu, Lin Ji, 2009. "Global exponential stability and periodicity of reaction–diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1538-1549.
    11. Lou, Xuyang & Cui, Baotong, 2007. "Boundedness and exponential stability for nonautonomous cellular neural networks with reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 653-662.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stamova, Ivanka & Stamov, Trayan & Stamov, Gani, 2022. "Lipschitz stability analysis of fractional-order impulsive delayed reaction-diffusion neural network models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Gani Stamov & Stefania Tomasiello & Ivanka Stamova & Cvetelina Spirova, 2019. "Stability of Sets Criteria for Impulsive Cohen-Grossberg Delayed Neural Networks with Reaction-Diffusion Terms," Mathematics, MDPI, vol. 8(1), pages 1-20, December.
    3. Zhang, Yutian & Luo, Qi, 2012. "Novel stability criteria for impulsive delayed reaction–diffusion Cohen–Grossberg neural networks via Hardy–Poincarè inequality," Chaos, Solitons & Fractals, Elsevier, vol. 45(8), pages 1033-1040.
    4. Fei Luo & Weiyi Hu & Enli Wu & Xiufang Yuan, 2024. "Global Exponential Stability of Impulsive Delayed Neural Networks with Parameter Uncertainties and Reaction–Diffusion Terms," Mathematics, MDPI, vol. 12(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian-hong Zhang & Li-hui Yang, 2012. "Dynamical analysis of fuzzy BAM neural networks with variable delays," Fuzzy Information and Engineering, Springer, vol. 4(1), pages 93-104, March.
    2. Li, Yongkun & Xing, Zhiwei, 2007. "Existence and global exponential stability of periodic solution of CNNs with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1686-1693.
    3. Li, Kelin & Zhang, Xinhua & Li, Zuoan, 2009. "Global exponential stability of impulsive cellular neural networks with time-varying and distributed delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1427-1434.
    4. Sheng, Li & Yang, Huizhong, 2009. "Robust stability of uncertain Markovian jumping Cohen–Grossberg neural networks with mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2120-2128.
    5. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    6. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    7. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    8. Gao, Ming & Cui, Baotong, 2009. "Global robust stability of neural networks with multiple discrete delays and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1823-1834.
    9. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of Cohen–Grossberg neural networks with constant and variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1355-1361.
    10. Singh, Vimal, 2007. "LMI approach to the global robust stability of a larger class of neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1927-1934.
    11. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    12. Xiong, Wenjun & Liang, Jinling, 2007. "Novel stability criteria for neutral systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1735-1741.
    13. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    14. Peng, Dezhong & Yi, Zhang, 2008. "Global convergence of an adaptive minor component extraction algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 550-561.
    15. Singh, Vimal, 2007. "On global robust stability of interval Hopfield neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1183-1188.
    16. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    17. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    18. Lou, Xuyang & Cui, Baotong, 2007. "Boundedness and exponential stability for nonautonomous cellular neural networks with reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 653-662.
    19. Lu, Jun Guo & Lu, Lin Ji, 2009. "Global exponential stability and periodicity of reaction–diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1538-1549.
    20. Mohamad, Sannay, 2008. "Computer simulations of exponentially convergent networks with large impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 331-344.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:1:p:492-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.