IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v33y2007i2p653-662.html
   My bibliography  Save this article

Boundedness and exponential stability for nonautonomous cellular neural networks with reaction–diffusion terms

Author

Listed:
  • Lou, Xuyang
  • Cui, Baotong

Abstract

Employing Lyapunov functional method, we analyze the ultimate boundedness and global exponential stability of a class of reaction–diffusion cellular neural networks with time-varying delays. Some new criteria are obtained to ensure ultimate boundedness and global exponential stability of delayed reaction–diffusion cellular neural networks (DRCNNs). Without assuming that the activation functions fijl(·) are bounded, the results extend and improve the earlier publications.

Suggested Citation

  • Lou, Xuyang & Cui, Baotong, 2007. "Boundedness and exponential stability for nonautonomous cellular neural networks with reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 653-662.
  • Handle: RePEc:eee:chsofr:v:33:y:2007:i:2:p:653-662
    DOI: 10.1016/j.chaos.2006.01.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906000890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.01.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Junwei & Guo, Yiqian & Xu, Shengyuan, 2006. "Global asymptotic stability analysis for cellular neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 349-353.
    2. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2006. "Stability analysis for cellular neural networks with variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 331-336.
    3. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2005. "Delay-dependent exponential stability of cellular neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1363-1369.
    4. Cui, Bao Tong & Lou, Xu Yang, 2006. "Global asymptotic stability of BAM neural networks with distributed delays and reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1347-1354.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Shujun & Wang, Xiaohu & Li, Dingshi, 2012. "Attracting and invariant sets of non-autonomous reaction-diffusion neural networks with time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2199-2214.
    2. Lou, Xuyang & Cui, Baotong, 2009. "Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2188-2197.
    3. Sheng, Li & Yang, Huizhong & Lou, Xuyang, 2009. "Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 930-939.
    4. Wang, Linshan & Zhang, Yan & Zhang, Zhe & Wang, Yangfan, 2009. "LMI-based approach for global exponential robust stability for reaction–diffusion uncertain neural networks with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 900-905.
    5. Zhao, Hongyong & Mao, Zisen, 2009. "Boundedness and stability of nonautonomous cellular neural networks with reaction-diffusion terms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1603-1617.
    6. Li, Zuoan & Li, Kelin, 2009. "Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 492-499.
    7. Gao, Ming & Cui, Baotong, 2009. "Robust exponential stability of interval Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1914-1928.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    2. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    3. Singh, Vimal, 2007. "LMI approach to the global robust stability of a larger class of neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1927-1934.
    4. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    5. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    6. Singh, Vimal, 2007. "On global robust stability of interval Hopfield neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1183-1188.
    7. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    8. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    9. Sheng, Li & Yang, Huizhong, 2009. "Robust stability of uncertain Markovian jumping Cohen–Grossberg neural networks with mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2120-2128.
    10. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    11. Gao, Ming & Cui, Baotong, 2009. "Global robust stability of neural networks with multiple discrete delays and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1823-1834.
    12. Zhang, Qiang & Xu, Xiaopeng Wei Jin, 2007. "Delay-dependent global stability results for delayed Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 662-668.
    13. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of Cohen–Grossberg neural networks with constant and variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1355-1361.
    14. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2008. "Delay-dependent exponential stability criteria for non-autonomous cellular neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 985-990.
    15. Li, Yongkun & Xing, Zhiwei, 2007. "Existence and global exponential stability of periodic solution of CNNs with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1686-1693.
    16. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2009. "Global exponential stability for nonautonomous cellular neural networks with unbounded delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1144-1151.
    17. Xiong, Wenjun & Liang, Jinling, 2007. "Novel stability criteria for neutral systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1735-1741.
    18. Li, Zuoan & Li, Kelin, 2009. "Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 492-499.
    19. Singh, Vimal, 2007. "Global robust stability of delayed neural networks: Estimating upper limit of norm of delayed connection weight matrix," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 259-263.
    20. Öcalan, Özkan & Duman, Oktay, 2009. "Oscillation analysis of neutral difference equations with delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 261-270.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:33:y:2007:i:2:p:653-662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.