Global robust exponential stability for interval neural networks with delay
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2009.03.034
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yucel, Eylem & Arik, Sabri, 2009. "Novel results for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1604-1614.
- Singh, Vimal, 2007. "Improved global robust stability criterion for delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 224-229.
- Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
- Arik, Sabri, 2005. "Global robust stability analysis of neural networks with discrete time delays," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1407-1414.
- Li, Chuandong & Liao, Xiaofeng & Zhang, Rong & Prasad, Ashutosh, 2005. "Global robust exponential stability analysis for interval neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 751-757.
- Wu, Wei & Cui, Bao Tong, 2008. "Global robust exponential stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 747-754.
- Zhang, Hongbin & Li, Chunguang & Liao, Xiaofeng, 2005. "A note on the robust stability of neural networks with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 357-360.
- Yang, Haifeng & Chu, Tianguang & Zhang, Cishen, 2006. "Exponential stability of neural networks with variable delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 133-139.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bao, Gang & Zeng, Zhigang, 2021. "Prescribed convergence analysis of recurrent neural networks with parameter variations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 858-870.
- Lan, Heng-you & Cui, Yi-Shun, 2009. "A neural network method for solving a system of linear variational inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1245-1252.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xu, Jian & Chung, Kwok-Wai, 2009. "Dynamics for a class of nonlinear systems with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 28-49.
- Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
- Ou, Ou, 2007. "Global robust exponential stability of delayed neural networks: An LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1742-1748.
- Tian, Junkang & Xu, Dongsheng, 2009. "New asymptotic stability criteria for neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1916-1922.
- Li, Chuandong & Chen, Jinyu & Huang, Tingwen, 2007. "A new criterion for global robust stability of interval neural networks with discrete time delays," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 561-570.
- Qiu, Jiqing & Yang, Hongjiu & Zhang, Jinhui & Gao, Zhifeng, 2009. "New robust stability criteria for uncertain neural networks with interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 579-585.
- Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
- Yucel, Eylem & Arik, Sabri, 2009. "Novel results for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1604-1614.
- Sun, Yeong-Jeu, 2007. "Duality between observation and output feedback for linear systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 879-884.
- Gao, Ming & Cui, Baotong, 2009. "Robust exponential stability of interval Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1914-1928.
- Xiong, Wenjun & Ma, Deyi & Liang, Jinling, 2009. "Robust convergence of Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1176-1184.
- Sun, Yeong-Jeu, 2007. "Stability criterion for a class of descriptor systems with discrete and distributed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 986-993.
- Sheng, Li & Yang, Huizhong, 2009. "Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2102-2113.
- Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
- Xu, Liguang & Xu, Daoyi, 2009. "Exponential p-stability of impulsive stochastic neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 263-272.
- He, Yong & Wang, Qing-Guo & Zheng, Wei-Xing, 2005. "Global robust stability for delayed neural networks with polytopic type uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1349-1354.
- Zhao, Hongyong & Ding, Nan & Chen, Ling, 2009. "Almost sure exponential stability of stochastic fuzzy cellular neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1653-1659.
- Zong, Guangdeng & Liu, Jia, 2009. "New delay-dependent global robust stability conditions for interval neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2954-2964.
- Souza, Fernando O. & Palhares, Reinaldo M. & Ekel, Petr Ya., 2009. "Improved asymptotic stability analysis for uncertain delayed state neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 240-247.
- Ding, Ke & Huang, Nan-Jing, 2008. "A new class of interval projection neural networks for solving interval quadratic program," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 718-725.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1567-1576. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.