IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i3p1493-1505.html
   My bibliography  Save this article

Stability and Hopf bifurcation analysis on a two-neuron network with discrete and distributed delays

Author

Listed:
  • Zhou, Xiaobing
  • Wu, Yue
  • Li, Yi
  • Yao, Xun

Abstract

In this paper, a two-neuron network with both discrete and distributed delays is considered. Local stability of this system is investigated by analyzing its associated transcendental characteristic equation. By taking the discrete time delay as a bifurcation parameter, it is found that this system undergoes a sequence of Hopf bifurcations. Moreover, formulae for determining the direction of Hopf bifurcation and the stability and period of bifurcating periodic solutions are derived. Finally, numerical simulations are given to illustrate the theoretical analysis.

Suggested Citation

  • Zhou, Xiaobing & Wu, Yue & Li, Yi & Yao, Xun, 2009. "Stability and Hopf bifurcation analysis on a two-neuron network with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1493-1505.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:3:p:1493-1505
    DOI: 10.1016/j.chaos.2007.09.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907007692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.09.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chuangxia & Huang, Lihong & Feng, Jianfeng & Nai, Mingyong & He, Yigang, 2007. "Hopf bifurcation analysis for a two-neuron network with four delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 795-812.
    2. Park, Ju H., 2007. "An analysis of global robust stability of uncertain cellular neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 800-807.
    3. Wang, Zidong & Shu, Huisheng & Liu, Yurong & Ho, Daniel W.C. & Liu, Xiaohui, 2006. "Robust stability analysis of generalized neural networks with discrete and distributed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 886-896.
    4. Arik, Sabri, 2005. "Global robust stability analysis of neural networks with discrete time delays," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1407-1414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dubey, Balram & Sajan, & Kumar, Ankit, 2021. "Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 164-192.
    2. Karaoglu, Esra & Merdan, Huseyin, 2014. "Hopf bifurcations of a ratio-dependent predator–prey model involving two discrete maturation time delays," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 159-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Wenjun & Ma, Deyi & Liang, Jinling, 2009. "Robust convergence of Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1176-1184.
    2. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    3. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    4. Wang, Zidong & Fang, Jian’an & Liu, Xiaohui, 2008. "Global stability of stochastic high-order neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 388-396.
    5. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    6. Xu, Jian & Chung, Kwok-Wai, 2009. "Dynamics for a class of nonlinear systems with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 28-49.
    7. Sun, Yeong-Jeu, 2007. "Duality between observation and output feedback for linear systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 879-884.
    8. Li, Tao & Fei, Shu-min & Zhang, Kan-jian, 2008. "Synchronization control of recurrent neural networks with distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 982-996.
    9. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    10. Chang, Wenting & Sang, Hong & Guo, Liangdong & Wu, Libing & Dimirovski, Georgi M., 2024. "Integrated L∞ anti-disturbance synchronization control for switched neural networks with unknown delays," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    11. Gao, Ming & Cui, Baotong, 2009. "Robust exponential stability of interval Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1914-1928.
    12. Ou, Ou, 2007. "Global robust exponential stability of delayed neural networks: An LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1742-1748.
    13. Gao, Ming & Cui, Baotong, 2009. "Global robust stability of neural networks with multiple discrete delays and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1823-1834.
    14. Yang, Yu & Ye, Jin, 2009. "Stability and bifurcation in a simplified five-neuron BAM neural network with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2357-2363.
    15. Sun, Yeong-Jeu, 2009. "Global exponential stability criterion for uncertain discrete-time cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2022-2024.
    16. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of Cohen–Grossberg neural networks with constant and variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1355-1361.
    17. Cui, Shihua & Zhao, Tao & Guo, Jie, 2009. "Global robust exponential stability for interval neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1567-1576.
    18. Xiong, WeiLi & Xu, BaoGuo, 2008. "Some criteria for robust stability of Cohen–Grossberg neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1357-1365.
    19. Rakkiyappan, R. & Balasubramaniam, P., 2009. "LMI conditions for stability of stochastic recurrent neural networks with distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1688-1696.
    20. Sun, Yeong-Jeu, 2007. "Stability criterion for a class of descriptor systems with discrete and distributed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 986-993.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:3:p:1493-1505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.