IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v25y2005i3p711-726.html
   My bibliography  Save this article

Sensitivity tools vs. Poincaré sections

Author

Listed:
  • Barrio, Roberto

Abstract

In this paper we introduce a modification of the fast Lyapunov indicator (FLI) denominated OFLITT2 indicator that may provide a global picture of the evolution of a dynamical system. Therefore, it gives an alternative or a complement to the pictures given by the classical Poincaré sections and, besides, it may be used for any dimension. We present several examples comparing with the Poincaré sections in two classical problems, the Hénon–Heiles and the extensible-pendulum problems. Besides, we show the application to Hamiltonians of three degrees of freedom as an isotropic harmonic oscillator in three dimensions perturbed by a cubic potential and non-Hamiltonian problems as a four-dimensional chaotic system. Finally, a numerical method especially designed for its computation is presented in the appendix.

Suggested Citation

  • Barrio, Roberto, 2005. "Sensitivity tools vs. Poincaré sections," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 711-726.
  • Handle: RePEc:eee:chsofr:v:25:y:2005:i:3:p:711-726
    DOI: 10.1016/j.chaos.2004.11.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905000159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.11.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi, Guoyuan & Du, Shengzhi & Chen, Guanrong & Chen, Zengqiang & yuan, Zhuzhi, 2005. "On a four-dimensional chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1671-1682.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Zarouan, Mohamed & Allali, Sofiène & Benrejeb, Mohamed, 2009. "Correlation between the bifurcation diagram structure and the predominant harmonics of an electrical power network response," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 483-491.
    3. Barrio, R. & Borczyk, W. & Breiter, S., 2009. "Spurious structures in chaos indicators maps," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1697-1714.
    4. Canbaz, Beyrul, 2022. "Chaos classification in forced fermionic instanton solutions by the Generalized Alignment Index (GALI) and the largest Lyapunov exponent," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Barrio, Roberto & Blesa, Fernando, 2009. "Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 560-582.
    6. Barrio, Roberto & Blesa, Fernando & Serrano, Sergio, 2008. "Qualitative analysis of the (N+1)-body ring problem," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 1067-1088.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zengqiang & Yang, Yong & Yuan, Zhuzhi, 2008. "A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1187-1196.
    2. Lei, Youming & Xu, Wei & Shen, Jianwei, 2007. "Robust synchronization of chaotic non-autonomous systems using adaptive-feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 371-379.
    3. Zhou, Xiaobing & Wu, Yue & Li, Yi & Wei, Zhengxi, 2008. "Hopf bifurcation analysis of the Liu system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1385-1391.
    4. Du, Shengzhi & van Wyk, Barend J. & Qi, Guoyuan & Tu, Chunling, 2009. "Chaotic system synchronization with an unknown master model using a hybrid HOD active control approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1900-1913.
    5. Li, Ruihong & Xu, Wei & Li, Shuang, 2009. "Anti-synchronization on autonomous and non-autonomous chaotic systems via adaptive feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1288-1296.
    6. Vincent, U.E., 2008. "Synchronization of identical and non-identical 4-D chaotic systems using active control," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1065-1075.
    7. Hammami, S. & Ben Saad, K. & Benrejeb, M., 2009. "On the synchronization of identical and non-identical 4-D chaotic systems using arrow form matrix," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 101-112.
    8. Megam Ngouonkadi, E.B. & Fotsin, H.B. & Louodop Fotso, P. & Kamdoum Tamba, V. & Cerdeira, Hilda A., 2016. "Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 151-163.
    9. Lei, Youming & Xu, Wei & Xie, Wenxian, 2007. "Synchronization of two chaotic four-dimensional systems using active control," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1823-1829.
    10. Ma, Junhai & Cui, Yaqiang & Liulixia,, 2009. "A study on the complexity of a business cycle model with great excitements in non-resonant condition," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2258-2267.
    11. Grassi, Giuseppe & Severance, Frank L. & Miller, Damon A., 2009. "Multi-wing hyperchaotic attractors from coupled Lorenz systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 284-291.
    12. Wu, Wenjuan & Chen, Zengqiang & Yuan, Zhuzhi, 2009. "The evolution of a novel four-dimensional autonomous system: Among 3-torus, limit cycle, 2-torus, chaos and hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2340-2356.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:25:y:2005:i:3:p:711-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.