IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v85y2016icp151-163.html
   My bibliography  Save this article

Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator

Author

Listed:
  • Megam Ngouonkadi, E.B.
  • Fotsin, H.B.
  • Louodop Fotso, P.
  • Kamdoum Tamba, V.
  • Cerdeira, Hilda A.

Abstract

We report on the bifurcation analysis of an extended Hindmarsh–Rose (eHR) neuronal oscillator. We prove that Hopf bifurcation occurs in this system, when an appropriate chosen bifurcation parameter varies and reaches its critical value. Applying the normal form theory, we derive a formula to determine the direction of the Hopf bifurcation and the stability of bifurcating periodic flows. To observe this latter bifurcation and to illustrate its theoretical analysis, numerical simulations are performed. Hence, we present an explanation of the discontinuous behavior of the amplitude of the repetitive response as a function of system’s parameters based on the presence of the subcritical unstable oscillations. Furthermore, the bifurcation structures of the system are studied, with special care on the effects of parameters associated with the slow current and the slower dynamical process. We find that the system presents diversity of bifurcations such as period-doubling, symmetry breaking, crises and reverse period-doubling, when the afore mentioned parameters are varied in tiny steps. The complexity of the bifurcation structures seems useful to understand how neurons encode information or how they respond to external stimuli. Furthermore, we find that the extended Hindmarsh–Rose model also presents the multistability of oscillatory and silent regimes for precise sets of its parameters. This phenomenon plays a practical role in short-term memory and appears to give an evolutionary advantage for neurons since they constitute part of multifunctional microcircuits such as central pattern generators.

Suggested Citation

  • Megam Ngouonkadi, E.B. & Fotsin, H.B. & Louodop Fotso, P. & Kamdoum Tamba, V. & Cerdeira, Hilda A., 2016. "Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 151-163.
  • Handle: RePEc:eee:chsofr:v:85:y:2016:i:c:p:151-163
    DOI: 10.1016/j.chaos.2016.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916300327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi, Guoyuan & Du, Shengzhi & Chen, Guanrong & Chen, Zengqiang & yuan, Zhuzhi, 2005. "On a four-dimensional chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1671-1682.
    2. Zhou, Xiaobing & Wu, Yue & Li, Yi & Wei, Zhengxi, 2008. "Hopf bifurcation analysis of the Liu system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1385-1391.
    3. Qi, Guoyuan & Chen, Guanrong & Du, Shengzhi & Chen, Zengqiang & Yuan, Zhuzhi, 2005. "Analysis of a new chaotic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 295-308.
    4. Arena, Paolo & Fortuna, Luigi & Frasca, Mattia & Rosa, Manuela La, 2006. "Locally active Hindmarsh–Rose neurons," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 405-412.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Zhang, Sen & Zheng, Jiahao & Wang, Xiaoping & Zeng, Zhigang, 2021. "A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Li, Bo & Liang, Houjun & He, Qizhi, 2021. "Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Evgeniya V. Pankratova & Maria S. Sinitsina & Susanna Gordleeva & Victor B. Kazantsev, 2022. "Bistability and Chaos Emergence in Spontaneous Dynamics of Astrocytic Calcium Concentration," Mathematics, MDPI, vol. 10(8), pages 1-20, April.
    5. Tabekoueng Njitacke, Zeric & Tsafack, Nestor & Ramakrishnan, Balamurali & Rajagopal, Kartikeyan & Kengne, Jacques & Awrejcewicz, Jan, 2021. "Complex dynamics from heterogeneous coupling and electromagnetic effect on two neurons: Application in images encryption," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Bao, Han & Yu, Xihong & Zhang, Yunzhen & Liu, Xiaofeng & Chen, Mo, 2023. "Initial condition-offset regulating synchronous dynamics and energy diversity in a memristor-coupled network of memristive HR neurons," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Lai, Qiang & Yang, Liang, 2023. "Discrete memristor applied to construct neural networks with homogeneous and heterogeneous coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Boui A Boya, Bertrand Frederick & Ramakrishnan, Balamurali & Effa, Joseph Yves & Kengne, Jacques & Rajagopal, Karthikeyan, 2022. "The effects of symmetry breaking on the dynamics of an inertial neural system with a non-monotonic activation function: Theoretical study, asymmetric multistability and experimental investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    9. Lin, Yi & Liu, Wenbo & Hang, Cheng, 2023. "Revelation and experimental verification of quasi-periodic bursting, periodic bursting, periodic oscillation in third-order non-autonomous memristive FitzHugh-Nagumo neuron circuit," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    10. Kemwoue, Florent Feudjio & Deli, Vandi & Edima, Hélène Carole & Mendimi, Joseph Marie & Gninzanlong, Carlos Lawrence & Dedzo, Mireille Mbou & Tagne, Jules Fossi & Atangana, Jacques, 2022. "Effects of delay in a biological environment subject to tumor dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ranchao & Fang, Tianbao, 2015. "Stability and Hopf bifurcation of a Lorenz-like system," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 335-343.
    2. Zhou, Xiaobing & Wu, Yue & Li, Yi & Wei, Zhengxi, 2008. "Hopf bifurcation analysis of the Liu system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1385-1391.
    3. Ma, Junhai & Cui, Yaqiang & Liulixia,, 2009. "A study on the complexity of a business cycle model with great excitements in non-resonant condition," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2258-2267.
    4. Wu, Wenjuan & Chen, Zengqiang & Yuan, Zhuzhi, 2009. "The evolution of a novel four-dimensional autonomous system: Among 3-torus, limit cycle, 2-torus, chaos and hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2340-2356.
    5. Liang, Xiyin & Qi, Guoyuan, 2017. "Mechanical analysis of Chen chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 173-177.
    6. Hammami, S. & Ben Saad, K. & Benrejeb, M., 2009. "On the synchronization of identical and non-identical 4-D chaotic systems using arrow form matrix," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 101-112.
    7. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    8. Barrio, Roberto, 2005. "Sensitivity tools vs. Poincaré sections," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 711-726.
    9. Wu, Wen-Juan & Chen, Zeng-Qiang & Yuan, Zhu-Zhi, 2009. "A computer-assisted proof for the existence of horseshoe in a novel chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2756-2761.
    10. Qinghui Liu & Xin Zhang, 2024. "Jacobi Stability Analysis of Liu System: Detecting Chaos," Mathematics, MDPI, vol. 12(13), pages 1-16, June.
    11. Ghamati, Mina & Balochian, Saeed, 2015. "Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 111-117.
    12. Lijuan Chen & Mingchu Yu & Jinnan Luo & Jinpeng Mi & Kaibo Shi & Song Tang, 2024. "Dynamic Analysis and FPGA Implementation of a New Linear Memristor-Based Hyperchaotic System with Strong Complexity," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    13. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Çalış, Yasemin & Demirci, Ali & Özemir, Cihangir, 2022. "Hopf bifurcation of a financial dynamical system with delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 343-361.
    15. Wu, Yue & Zhou, Xiaobing & Chen, Jia & Hui, Bei, 2009. "Chaos synchronization of a new 3D chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1812-1819.
    16. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    17. Faradja, Philippe & Qi, Guoyuan, 2020. "Analysis of multistability, hidden chaos and transient chaos in brushless DC motor," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    18. Wu, Jiening & Wang, Lidan & Chen, Guanrong & Duan, Shukai, 2016. "A memristive chaotic system with heart-shaped attractors and its implementation," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 20-29.
    19. Chen, Zengqiang & Yang, Yong & Yuan, Zhuzhi, 2008. "A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1187-1196.
    20. Qi, Guoyuan & van Wyk, Michaël Antonie & van Wyk, Barend Jacobus & Chen, Guanrong, 2009. "A new hyperchaotic system and its circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2544-2549.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:85:y:2016:i:c:p:151-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.