IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1891-d1417378.html
   My bibliography  Save this article

Dynamic Analysis and FPGA Implementation of a New Linear Memristor-Based Hyperchaotic System with Strong Complexity

Author

Listed:
  • Lijuan Chen

    (Kaiserslautern Intelligent Manufacturing School, Shanghai Dianji University, Shanghai 201306, China
    TAMS Group, Department of Informatics, Universität Hamburg, 20148 Hamburg, Germany)

  • Mingchu Yu

    (Kaiserslautern Intelligent Manufacturing School, Shanghai Dianji University, Shanghai 201306, China)

  • Jinnan Luo

    (College of Electrical Engineering, Southwest Minzu University, Chengdu 610041, China)

  • Jinpeng Mi

    (TAMS Group, Department of Informatics, Universität Hamburg, 20148 Hamburg, Germany
    IMI Group, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Kaibo Shi

    (School of Information Science and Engineering, Chengdu University, Chengdu 610106, China)

  • Song Tang

    (TAMS Group, Department of Informatics, Universität Hamburg, 20148 Hamburg, Germany
    IMI Group, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract

Chaotic or hyperchaotic systems have a significant role in engineering applications such as cryptography and secure communication, serving as primary signal generators. To ensure stronger complexity, memristors with sufficient nonlinearity are commonly incorporated into the system, suffering a limitation on the physical implementation. In this paper, we propose a new four-dimensional (4D) hyperchaotic system based on the linear memristor which is the most straightforward to implement physically. Through numerical studies, we initially demonstrate that the proposed system exhibits robust hyperchaotic behaviors under typical parameter conditions. Subsequently, we theoretically prove the existence of solid hyperchaos by combining the topological horseshoe theory with computer-assisted research. Finally, we present the realization of the proposed hyperchaotic system using an FPGA platform. This proposed system possesses two key properties. Firstly, this work suggests that the simplest memristor can also induce strong nonlinear behaviors, offering a new perspective for constructing memristive systems. Secondly, compared to existing systems, our system not only has the largest Kaplan-Yorke dimension, but also has clear advantages in areas related to engineering applications, such as the parameter range and signal bandwidth, indicating promising potential in engineering applications.

Suggested Citation

  • Lijuan Chen & Mingchu Yu & Jinnan Luo & Jinpeng Mi & Kaibo Shi & Song Tang, 2024. "Dynamic Analysis and FPGA Implementation of a New Linear Memristor-Based Hyperchaotic System with Strong Complexity," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1891-:d:1417378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amer Awad Alzaidi & Musheer Ahmad & Hussam S. Ahmed & Eesa Al Solami, 2018. "Sine-Cosine Optimization-Based Bijective Substitution-Boxes Construction Using Enhanced Dynamics of Chaotic Map," Complexity, Hindawi, vol. 2018, pages 1-16, December.
    2. Yu, Hui & Du, Shengzhi & Dong, Enzeng & Tong, Jigang, 2022. "Transient behaviors and equilibria-analysis-based boundary crisis analysis in a smooth 4D dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Chen, Lijuan & Tang, Song & Li, Qingdu & Zhong, Shouming, 2018. "A new 4D hyperchaotic system with high complexity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 44-56.
    4. Fu, Shihui & Liu, Yuan, 2020. "Complex dynamical behavior of modified MLC circuit," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Xiu, Chunbo & Fang, Jingyao & Ma, Xin, 2022. "Design and circuit implementations of multimemristive hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Qi, Guoyuan & Chen, Guanrong & Du, Shengzhi & Chen, Zengqiang & Yuan, Zhuzhi, 2005. "Analysis of a new chaotic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 295-308.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xiyin & Qi, Guoyuan, 2017. "Mechanical analysis of Chen chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 173-177.
    2. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    3. Wu, Wen-Juan & Chen, Zeng-Qiang & Yuan, Zhu-Zhi, 2009. "A computer-assisted proof for the existence of horseshoe in a novel chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2756-2761.
    4. Megam Ngouonkadi, E.B. & Fotsin, H.B. & Louodop Fotso, P. & Kamdoum Tamba, V. & Cerdeira, Hilda A., 2016. "Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 151-163.
    5. Ghamati, Mina & Balochian, Saeed, 2015. "Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 111-117.
    6. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Çalış, Yasemin & Demirci, Ali & Özemir, Cihangir, 2022. "Hopf bifurcation of a financial dynamical system with delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 343-361.
    8. Wu, Yue & Zhou, Xiaobing & Chen, Jia & Hui, Bei, 2009. "Chaos synchronization of a new 3D chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1812-1819.
    9. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    10. Faradja, Philippe & Qi, Guoyuan, 2020. "Analysis of multistability, hidden chaos and transient chaos in brushless DC motor," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    11. Wu, Jiening & Wang, Lidan & Chen, Guanrong & Duan, Shukai, 2016. "A memristive chaotic system with heart-shaped attractors and its implementation," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 20-29.
    12. Qi, Guoyuan & van Wyk, Michaël Antonie & van Wyk, Barend Jacobus & Chen, Guanrong, 2009. "A new hyperchaotic system and its circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2544-2549.
    13. Wu, Ranchao & Fang, Tianbao, 2015. "Stability and Hopf bifurcation of a Lorenz-like system," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 335-343.
    14. Guohui Li & Xiangyu Zhang & Hong Yang, 2019. "Numerical Analysis, Circuit Simulation, and Control Synchronization of Fractional-Order Unified Chaotic System," Mathematics, MDPI, vol. 7(11), pages 1-18, November.
    15. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.
    16. Zhou, Xiaobing & Wu, Yue & Li, Yi & Wei, Zhengxi, 2008. "Hopf bifurcation analysis of the Liu system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1385-1391.
    17. Amer Awad Alzaidi & Musheer Ahmad & Hussam S. Ahmed & Eesa Al Solami, 2018. "Sine-Cosine Optimization-Based Bijective Substitution-Boxes Construction Using Enhanced Dynamics of Chaotic Map," Complexity, Hindawi, vol. 2018, pages 1-16, December.
    18. Yang Peng & Jiang Wu & Limin Zou & Yuming Feng & Zhengwen Tu, 2019. "A Generalization of the Cauchy-Schwarz Inequality and Its Application to Stability Analysis of Nonlinear Impulsive Control Systems," Complexity, Hindawi, vol. 2019, pages 1-7, March.
    19. Qi, Guoyuan & Chen, Guanrong & Zhang, Yuhui, 2008. "On a new asymmetric chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 409-423.
    20. Jimin Yu & Zeming Zhao & Yabin Shao, 2023. "On Cauchy Problems of Caputo Fractional Differential Inclusion with an Application to Fractional Non-Smooth Systems," Mathematics, MDPI, vol. 11(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1891-:d:1417378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.