IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v38y2008i1p221-226.html
   My bibliography  Save this article

Global stability of a delayed SIRS model with temporary immunity

Author

Listed:
  • Wen, Luosheng
  • Yang, Xiaofan

Abstract

This paper addresses a time-delayed SIRS model with a linear incidence rate. Immunity gained by experiencing the disease is temporary; whenever infected, the disease individuals will return to the susceptible class after a fixed period of time. First, the local and global stabilities of the infection-free equilibrium are analyzed, respectively. Second, the endemic equilibrium is formulated in terms of the incidence rate, and two sufficient conditions for its locally asymptotic stability are found, one being proved theoretically, while the other being shown by introducing an auxiliary optimization problem and solving this problem with the help of Matlab toolbox. Finally, by using a Lyapunov functional, a sufficient criterion for the global stability of the endemic equilibrium is established.

Suggested Citation

  • Wen, Luosheng & Yang, Xiaofan, 2008. "Global stability of a delayed SIRS model with temporary immunity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 221-226.
  • Handle: RePEc:eee:chsofr:v:38:y:2008:i:1:p:221-226
    DOI: 10.1016/j.chaos.2006.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906010459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Guang Zhao & Chen, Lan Sun & Sun, Li Hua, 2005. "Complexity of an SIR epidemic dynamics model with impulsive vaccination control," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 495-505.
    2. Li, Guihua & Jin, Zhen, 2005. "Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1177-1184.
    3. Li, Guihua & Zhen, Jin, 2005. "Global stability of an SEI epidemic model with general contact rate," Chaos, Solitons & Fractals, Elsevier, vol. 23(3), pages 997-1004.
    4. Wang, Kaifa & Wang, Wendi & Liu, Xianning, 2006. "Viral infection model with periodic lytic immune response," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 90-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zizhen & Kundu, Soumen & Tripathi, Jai Prakash & Bugalia, Sarita, 2020. "Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Fatima-Zohra Younsi & Ahmed Bounnekar & Djamila Hamdadou & Omar Boussaid, 2019. "Integration of Multiple Regression Model in an Epidemiological Decision Support System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1755-1783, November.
    3. Zizhen Zhang & Fangfang Yang & Wanjun Xia, 2019. "Hopf Bifurcation Analysis of a Synthetic Drug Transmission Model with Time Delays," Complexity, Hindawi, vol. 2019, pages 1-17, November.
    4. Xu, Rui & Ma, Zhien, 2009. "Stability of a delayed SIRS epidemic model with a nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2319-2325.
    5. Laid Chahrazed, 2021. "Stochastic Stability and Analytical Solution with Homotopy Perturbation Method of Multicompartment Non-Linear Epidemic Model with Saturated Rate," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 7(3), pages 149-157, 07-2021.
    6. Jiang, Zhichao & Ma, Wanbiao & Wei, Junjie, 2016. "Global Hopf bifurcation and permanence of a delayed SEIRS epidemic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 35-54.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tailei & Teng, Zhidong, 2008. "Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1456-1468.
    2. Meng, Xinzhu & Jiao, Jianjun & Chen, Lansun, 2009. "Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2114-2125.
    3. Zhou, Yugui & Xiao, Dongmei & Li, Yilong, 2007. "Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1903-1915.
    4. Wang, Yi & Cao, Jinde, 2014. "Global dynamics of multi-group SEI animal disease models with indirect transmission," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 81-89.
    5. Li, Guihua & Wang, Wendi & Jin, Zhen, 2006. "Global stability of an SEIR epidemic model with constant immigration," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 1012-1019.
    6. Zhang, Tailei & Teng, Zhidong, 2009. "Extinction and permanence for a pulse vaccination delayed SEIRS epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2411-2425.
    7. Tewa, Jean Jules & Dimi, Jean Luc & Bowong, Samuel, 2009. "Lyapunov functions for a dengue disease transmission model," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 936-941.
    8. Cai, Liming & Wu, Jingang, 2009. "Analysis of an HIV/AIDS treatment model with a nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 175-182.
    9. Bai, Zhenguo & Zhou, Yicang, 2012. "Dynamics of a viral infection model with delayed CTL response and immune circadian rhythm," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1133-1139.
    10. Pang, Guoping & Wang, Fengyan & Chen, Lansun, 2009. "Analysis of a viral disease model with saturated contact rate," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 17-27.
    11. Yang, Yali & Li, Jianquan & Ma, Zhien & Liu, Luju, 2010. "Global stability of two models with incomplete treatment for tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 79-85.
    12. Arenas, Abraham J. & González-Parra, Gilberto & Villanueva Micó, Rafael-J., 2010. "Modeling toxoplasmosis spread in cat populations under vaccination," Theoretical Population Biology, Elsevier, vol. 77(4), pages 227-237.
    13. Ji, Yu & Min, Lequan & Zheng, Yu & Su, Yongmei, 2010. "A viral infection model with periodic immune response and nonlinear CTL response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2309-2316.
    14. Selvan, T. Tamil & Kumar, M., 2023. "Dynamics of a deterministic and a stochastic epidemic model combined with two distinct transmission mechanisms and saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    15. Tipsri, S. & Chinviriyasit, W., 2015. "The effect of time delay on the dynamics of an SEIR model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 153-172.
    16. Gakkhar, Sunita & Negi, Kuldeep, 2008. "Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 626-638.
    17. Xingjie Wu & Wei Du & Genan Pan & Wentao Huang, 2013. "The dynamical behaviors of a Ivlev-type two-prey two-predator system with impulsive effect," Indian Journal of Pure and Applied Mathematics, Springer, vol. 44(1), pages 1-27, February.
    18. Rao, Xiao-Bo & Zhao, Xu-Ping & Chu, Yan-Dong & Zhang, Jian-Gang & Gao, Jian-She, 2020. "The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: Infinite cascade of Stern-Brocot sum trees," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    19. Sun, Chengjun & Lin, Yiping & Tang, Shoupeng, 2007. "Global stability for an special SEIR epidemic model with nonlinear incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 290-297.
    20. Cai, Liming & Li, Xuezhi, 2009. "Stability and Hopf bifurcation in a delayed model for HIV infection of CD4+T cells," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 1-11.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:38:y:2008:i:1:p:221-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.