IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i1p175-182.html
   My bibliography  Save this article

Analysis of an HIV/AIDS treatment model with a nonlinear incidence

Author

Listed:
  • Cai, Liming
  • Wu, Jingang

Abstract

An HIV/AIDS treatment model with a nonlinear incidence is formulated. The infectious period is partitioned into the asymptotic and the symptomatic phases according to clinical stages. The constant recruitment rate, disease-induced death, drug therapies, as well as a nonlinear incidence, are incorporated into the model. The basic reproduction number R0 of the model is determined by the method of next generation matrix. Mathematical analysis establishes that the global dynamics of the spread of the HIV infectious disease are completely determined by the basic reproduction number R0. If R0⩽1, the disease always dies out and the disease-free equilibrium is globally stable. If R0>1, the disease persists and the unique endemic equilibrium is globally asymptotically stable in the interior of the feasible region.

Suggested Citation

  • Cai, Liming & Wu, Jingang, 2009. "Analysis of an HIV/AIDS treatment model with a nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 175-182.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:1:p:175-182
    DOI: 10.1016/j.chaos.2007.11.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907009575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.11.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dehghan, Mehdi & Nasri, Mostafa & Razvan, Mohammad Reza, 2007. "Global stability of a deterministic model for HIV infection in vivo," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1225-1238.
    2. Morariu, V.V. & Isvoran, Adriana & Zainea, Oana, 2007. "A non-linear approach to the structure–mobility relationship in protein main chains," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1305-1315.
    3. Sun, Chengjun & Lin, Yiping & Tang, Shoupeng, 2007. "Global stability for an special SEIR epidemic model with nonlinear incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 290-297.
    4. Li, Guihua & Zhen, Jin, 2005. "Global stability of an SEI epidemic model with general contact rate," Chaos, Solitons & Fractals, Elsevier, vol. 23(3), pages 997-1004.
    5. Wang, Kaifa & Wang, Wendi & Liu, Xianning, 2006. "Viral infection model with periodic lytic immune response," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 90-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Liming & Guo, Shumin & Li, XueZhi & Ghosh, Mini, 2009. "Global dynamics of a dengue epidemic mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2297-2304.
    2. Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Zhou, Baoquan & Jiang, Daqing & Dai, Yucong & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Liming & Li, Xuezhi, 2009. "Stability and Hopf bifurcation in a delayed model for HIV infection of CD4+T cells," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 1-11.
    2. Wen, Luosheng & Yang, Xiaofan, 2008. "Global stability of a delayed SIRS model with temporary immunity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 221-226.
    3. Naim, Mouhcine & Lahmidi, Fouad & Namir, Abdelwahed & Kouidere, Abdelfatah, 2021. "Dynamics of an fractional SEIR epidemic model with infectivity in latent period and general nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Jiang, Xiaowu & Zhou, Xueyong & Shi, Xiangyun & Song, Xinyu, 2008. "Analysis of stability and Hopf bifurcation for a delay-differential equation model of HIV infection of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 447-460.
    5. Zhang, Tailei & Teng, Zhidong, 2008. "Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1456-1468.
    6. Bai, Zhenguo & Zhou, Yicang, 2012. "Dynamics of a viral infection model with delayed CTL response and immune circadian rhythm," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1133-1139.
    7. Pang, Guoping & Wang, Fengyan & Chen, Lansun, 2009. "Analysis of a viral disease model with saturated contact rate," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 17-27.
    8. Konstantin E. Starkov & Anatoly N. Kanatnikov, 2021. "Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results," Mathematics, MDPI, vol. 9(16), pages 1-14, August.
    9. Yang, Yali & Li, Jianquan & Ma, Zhien & Liu, Luju, 2010. "Global stability of two models with incomplete treatment for tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 79-85.
    10. Ji, Yu & Min, Lequan & Zheng, Yu & Su, Yongmei, 2010. "A viral infection model with periodic immune response and nonlinear CTL response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2309-2316.
    11. Selvan, T. Tamil & Kumar, M., 2023. "Dynamics of a deterministic and a stochastic epidemic model combined with two distinct transmission mechanisms and saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    12. Sun, Chengjun & Lin, Yiping & Tang, Shoupeng, 2007. "Global stability for an special SEIR epidemic model with nonlinear incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 290-297.
    13. Zhou, Yugui & Xiao, Dongmei & Li, Yilong, 2007. "Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1903-1915.
    14. Xu, Na & Shang, Pengjian & Kamae, Santi, 2009. "Minimizing the effect of exponential trends in detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 311-316.
    15. Wang, Yi & Cao, Jinde, 2014. "Global dynamics of multi-group SEI animal disease models with indirect transmission," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 81-89.
    16. Jajarmi, Amin & Baleanu, Dumitru, 2018. "A new fractional analysis on the interaction of HIV with CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 221-229.
    17. Ilnytskyi, Jaroslav & Pikuta, Piotr & Ilnytskyi, Hryhoriy, 2018. "Stationary states and spatial patterning in the cellular automaton SEIS epidemiology model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 241-255.
    18. Liao, Shu & Wang, Jin, 2012. "Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices," Chaos, Solitons & Fractals, Elsevier, vol. 45(7), pages 966-977.
    19. Ciorsac, Alecu & Craciun, Dana & Ostafe, Vasile & Isvoran, Adriana, 2011. "Nonlinear correlations in the hydrophobicity and average flexibility along the glycolytic enzymes sequences," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 191-197.
    20. Gao, Ting & Wang, Wendi & Liu, Xianning, 2011. "Mathematical analysis of an HIV model with impulsive antiretroviral drug doses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 653-665.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:1:p:175-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.