IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i5p2114-2125.html
   My bibliography  Save this article

Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination

Author

Listed:
  • Meng, Xinzhu
  • Jiao, Jianjun
  • Chen, Lansun

Abstract

Since the investigation of impulsive delay differential equations is beginning, the literature on delay epidemic models with pulse vaccination is not extensive. In this paper, we propose a new SEIRS epidemic disease model with two profitless delays and vertical transmission, and analyze the dynamics behaviors of the model under pulse vaccination. Using the discrete dynamical system determined by the stroboscopic map, we obtain a ‘infection-free’ periodic solution, further, show that the ‘infection-free’ periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using a new modeling method, we obtain sufficient condition for the permanence of the epidemic model with pulse vaccination. We show that time delays, pulse vaccination and vertical transmission can bring different effects on the dynamics behaviors of the model by numerical analysis. Our results also show the delays are “profitless”. In this paper, the main feature is to introduce two discrete time delays, vertical transmission and impulse into SEIRS epidemic model and to give pulse vaccination strategies.

Suggested Citation

  • Meng, Xinzhu & Jiao, Jianjun & Chen, Lansun, 2009. "Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2114-2125.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:5:p:2114-2125
    DOI: 10.1016/j.chaos.2007.09.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907008569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.09.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Guang Zhao & Chen, Lan Sun & Sun, Li Hua, 2005. "Complexity of an SIR epidemic dynamics model with impulsive vaccination control," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 495-505.
    2. Li, Guihua & Jin, Zhen, 2005. "Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1177-1184.
    3. Pang, Guoping & Chen, Lansun, 2007. "A delayed SIRS epidemic model with pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1629-1635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Yingying & Huo, Liang'an & Zhao, Laijun, 2022. "Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Cai, Chao-Ran & Wu, Zhi-Xi & Guan, Jian-Yue, 2014. "Effect of vaccination strategies on the dynamic behavior of epidemic spreading and vaccine coverage," Chaos, Solitons & Fractals, Elsevier, vol. 62, pages 36-43.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Luosheng & Yang, Xiaofan, 2008. "Global stability of a delayed SIRS model with temporary immunity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 221-226.
    2. Zhang, Tailei & Teng, Zhidong, 2009. "Extinction and permanence for a pulse vaccination delayed SEIRS epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2411-2425.
    3. Liu, Junli & Zhou, Yicang, 2009. "Global stability of an SIRS epidemic model with transport-related infection," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 145-158.
    4. Zhang, Tailei & Teng, Zhidong, 2008. "Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1456-1468.
    5. Pang, Guoping & Wang, Fengyan & Chen, Lansun, 2009. "Analysis of a viral disease model with saturated contact rate," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 17-27.
    6. Arenas, Abraham J. & González-Parra, Gilberto & Villanueva Micó, Rafael-J., 2010. "Modeling toxoplasmosis spread in cat populations under vaccination," Theoretical Population Biology, Elsevier, vol. 77(4), pages 227-237.
    7. Tipsri, S. & Chinviriyasit, W., 2015. "The effect of time delay on the dynamics of an SEIR model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 153-172.
    8. Liu, Xinzhi & Stechlinski, Peter, 2014. "SIS models with switching and pulse control," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 727-742.
    9. Gakkhar, Sunita & Negi, Kuldeep, 2008. "Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 626-638.
    10. Xingjie Wu & Wei Du & Genan Pan & Wentao Huang, 2013. "The dynamical behaviors of a Ivlev-type two-prey two-predator system with impulsive effect," Indian Journal of Pure and Applied Mathematics, Springer, vol. 44(1), pages 1-27, February.
    11. Rao, Xiao-Bo & Zhao, Xu-Ping & Chu, Yan-Dong & Zhang, Jian-Gang & Gao, Jian-She, 2020. "The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: Infinite cascade of Stern-Brocot sum trees," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Zhou, Yugui & Xiao, Dongmei & Li, Yilong, 2007. "Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1903-1915.
    13. Wang, Yi & Cao, Jinde, 2014. "Global dynamics of multi-group SEI animal disease models with indirect transmission," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 81-89.
    14. Ndanguza, Denis & Mbalawata, Isambi S. & Haario, Heikki & Tchuenche, Jean M., 2017. "Analysis of bias in an Ebola epidemic model by extended Kalman filter approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 142(C), pages 113-129.
    15. Imane Abouelkheir & Fadwa El Kihal & Mostafa Rachik & Ilias Elmouki, 2019. "Optimal Impulse Vaccination Approach for an SIR Control Model with Short-Term Immunity," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    16. Ren, Jianguo & Yang, Xiaofan & Yang, Lu-Xing & Xu, Yonghong & Yang, Fanzhou, 2012. "A delayed computer virus propagation model and its dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 74-79.
    17. Awawdeh, Fadi & Adawi, A. & Mustafa, Z., 2009. "Solutions of the SIR models of epidemics using HAM," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3047-3052.
    18. Chen, Yiping & Liu, Zhijun, 2009. "Modelling and analysis of an impulsive SI model with Monod-Haldane functional response," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1698-1714.
    19. Jiang, Zhichao & Wei, Junjie, 2008. "Stability and bifurcation analysis in a delayed SIR model," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 609-619.
    20. Weibin Wang & Zeyu Xia, 2023. "Study of COVID-19 Epidemic Control Capability and Emergency Management Strategy Based on Optimized SEIR Model," Mathematics, MDPI, vol. 11(2), pages 1-31, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:5:p:2114-2125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.