IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v122y2016icp35-54.html
   My bibliography  Save this article

Global Hopf bifurcation and permanence of a delayed SEIRS epidemic model

Author

Listed:
  • Jiang, Zhichao
  • Ma, Wanbiao
  • Wei, Junjie

Abstract

In this paper, an SEIRS system with two delays and the general nonlinear incidence rate is considered. The positivity and boundedness of solutions are investigated. The basic reproductive number, R0, is derived. If R0≤1, then the disease-free equilibrium is globally asymptotically stable and the disease dies out. If R0>1, then there exists a unique endemic equilibrium whose locally asymptotical stability and the existence of local Hopf bifurcations are established by analyzing the distribution of the characteristic values. An explicit algorithm for determining the direction of Hopf bifurcations and the stability of the bifurcating periodic solutions is derived by using the center manifold and the normal form theory. Furthermore, there exists at least one positive periodic solution as the delay varies in some regions by using the global Hopf bifurcation result of Wu for functional differential equations. If R0>1, then the sufficient conditions of the permanence of the system are obtained, i.e., the disease eventually persists in the population. Especially, the upper and lower boundaries that each population can coexist are given exactly. Some numerical simulations are performed to confirm the correctness of theoretical analyses.

Suggested Citation

  • Jiang, Zhichao & Ma, Wanbiao & Wei, Junjie, 2016. "Global Hopf bifurcation and permanence of a delayed SEIRS epidemic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 35-54.
  • Handle: RePEc:eee:matcom:v:122:y:2016:i:c:p:35-54
    DOI: 10.1016/j.matcom.2015.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475415002517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2015.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Zhichao & Wei, Junjie, 2008. "Stability and bifurcation analysis in a delayed SIR model," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 609-619.
    2. Wen, Luosheng & Yang, Xiaofan, 2008. "Global stability of a delayed SIRS model with temporary immunity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 221-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharma, Natasha & Gupta, Arvind Kumar, 2017. "Impact of time delay on the dynamics of SEIR epidemic model using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 114-125.
    2. Liu, Qiming & Li, Hua, 2019. "Global dynamics analysis of an SEIR epidemic model with discrete delay on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 289-296.
    3. Zhang, Zizhen & Kundu, Soumen & Tripathi, Jai Prakash & Bugalia, Sarita, 2020. "Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    4. Duan, Xi-Chao & Yin, Jun-Feng & Li, Xue-Zhi, 2017. "Global Hopf bifurcation of an SIRS epidemic model with age-dependent recovery," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 613-624.
    5. Mahajan, Shveta & Kumar, Deepak & Verma, Atul Kumar & Sharma, Natasha, 2023. "Dynamic analysis of modified SEIR epidemic model with time delay in geographical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kai & Wei, Junjie, 2009. "Stability and Hopf bifurcation analysis of a prey–predator system with two delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2606-2613.
    2. Raja Sekhara Rao, P. & Naresh Kumar, M., 2015. "A dynamic model for infectious diseases: The role of vaccination and treatment," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 34-49.
    3. Fatima-Zohra Younsi & Ahmed Bounnekar & Djamila Hamdadou & Omar Boussaid, 2019. "Integration of Multiple Regression Model in an Epidemiological Decision Support System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1755-1783, November.
    4. Li, Xue-Zhi & Li, Wen-Sheng & Ghosh, Mini, 2009. "Stability and bifurcation of an SIS epidemic model with treatment," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2822-2832.
    5. Xu, Rui & Ma, Zhien, 2009. "Stability of a delayed SIRS epidemic model with a nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2319-2325.
    6. Yu, Chunbo & Wei, Junjie, 2009. "Stability and bifurcation analysis in a basic model of the immune response with delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1223-1234.
    7. Cai, Liming & Guo, Shumin & Li, XueZhi & Ghosh, Mini, 2009. "Global dynamics of a dengue epidemic mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2297-2304.
    8. Laid Chahrazed, 2021. "Stochastic Stability and Analytical Solution with Homotopy Perturbation Method of Multicompartment Non-Linear Epidemic Model with Saturated Rate," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 7(3), pages 149-157, 07-2021.
    9. Zizhen Zhang & Fangfang Yang & Wanjun Xia, 2019. "Hopf Bifurcation Analysis of a Synthetic Drug Transmission Model with Time Delays," Complexity, Hindawi, vol. 2019, pages 1-17, November.
    10. Zhang, Zizhen & Kundu, Soumen & Tripathi, Jai Prakash & Bugalia, Sarita, 2020. "Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    11. Dramane Ouedraogo & Ali Traore & Aboudramane Guiro, 2020. "Global Analysis of SIRS Epidemic Model With General Incidence Function and Incomplete Recovery Rates Stochastical Model," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 12(6), pages 100-100, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:122:y:2016:i:c:p:35-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.