IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v37y2008i3p781-791.html
   My bibliography  Save this article

The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces

Author

Listed:
  • Ćirić, Ljubomir B.
  • Ješić, Siniša N.
  • Ume, Jeong Sheok

Abstract

In this paper we introduce and investigate a class of asymptotically nonexpansive mappings which properly extends the class of nonexpansive mappings. We proved general existence theorems for fixed and periodic points of these mappings in arbitrary intuitionistic fuzzy metric spaces and so we solved an open problem, related to periodic points.

Suggested Citation

  • Ćirić, Ljubomir B. & Ješić, Siniša N. & Ume, Jeong Sheok, 2008. "The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 781-791.
  • Handle: RePEc:eee:chsofr:v:37:y:2008:i:3:p:781-791
    DOI: 10.1016/j.chaos.2006.09.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906009258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.09.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2006. "Is Einstein’s general field equation more fundamental than quantum field theory and particle physics?," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 525-531.
    2. Wang, Junwei & Zhou, Tianshou, 2007. "Chaos synchronization based on contraction principle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 163-170.
    3. Tanaka, Yosuke, 2007. "The mass spectrum of heavier hadrons and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 996-1007.
    4. Razani, Abdolrahman & Shirdaryazdi, Maryam, 2007. "A common fixed point theorem of compatible maps in Menger space," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 26-34.
    5. Tanaka, Yosuke & Mizuno, Yuji & Kado, Tatsuhiko & Zhao, Hua-An, 2007. "Nonlinear dynamics in the relativistic field equation," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1054-1075.
    6. Alaca, Cihangir & Turkoglu, Duran & Yildiz, Cemil, 2006. "Fixed points in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1073-1078.
    7. Iovane, G. & Gargiulo, G. & Zappale, E., 2006. "A Cantorian potential theory for describing dynamical systems on El Naschie’s space–time," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 588-598.
    8. Razani, Abdolrahman, 2006. "Existence of fixed point for the nonexpansive mapping of intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 367-373.
    9. Saadati, Reza & Park, Jin Han, 2006. "On the intuitionistic fuzzy topological spaces," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 331-344.
    10. Giordano, P. & Iovane, G. & Laserra, E., 2007. "El Naschie ϵ(∞) Cantorian structures with spatial pseudo-spherical symmetry: A possible description of the actual segregated universe," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1108-1117.
    11. Ghaemi, M.B. & Razani, Abdolrahman, 2006. "Fixed and periodic points in the probabilistic normed and metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1181-1187.
    12. Saadati, Reza & Razani, Abdolrahman & Adibi, H., 2007. "A common fixed point theorem in L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 358-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parvin Azhdari, 2015. "Some Theorems about -Contraction in Fuzzy Metric Spaces," Journal of Mathematics, Hindawi, vol. 2015, pages 1-5, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saadati, R. & Sedghi, S. & Shobe, N., 2008. "Modified intuitionistic fuzzy metric spaces and some fixed point theorems," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 36-47.
    2. Goudarzi, M. & Vaezpour, S.M. & Saadati, R., 2009. "On the intuitionistic fuzzy inner product spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1105-1112.
    3. Ješić, Siniša N., 2009. "Convex structure, normal structure and a fixed point theorem in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 292-301.
    4. Mursaleen, M. & Mohiuddine, S.A., 2009. "Statistical convergence of double sequences in intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2414-2421.
    5. Deschrijver, Glad & O’Regan, Donal & Saadati, Reza & Mansour Vaezpour, S., 2009. "L-Fuzzy Euclidean normed spaces and compactness," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 40-45.
    6. Qiu, Dong & Shu, Lan & Guan, Jian, 2009. "Common fixed point theorems for fuzzy mappings under Φ-contraction condition," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 360-367.
    7. Ješić, Siniša N. & Babačev, Nataša A., 2008. "Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 675-687.
    8. Saadati, Reza, 2008. "Notes to the paper “Fixed points in intuitionistic fuzzy metric spaces” and its generalization to L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 176-180.
    9. Deshpande, Bhavana, 2009. "Fixed point and (DS)-weak commutativity condition in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2722-2728.
    10. Yuan, De-you & Du, Shu-de & Cheng, Zheng-xing, 2009. "Design and properties of vector-valued wavelets associated with an orthogonal vector-valued scaling function," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1368-1376.
    11. Llorens-Fuster, Enrique & Petruşel, Adrian & Yao, Jen-Chih, 2009. "Iterated function systems and well-posedness," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1561-1568.
    12. Nabanita Konwar & Ayhan Esi & Pradip Debnath, 2019. "New Fixed Point Theorems via Contraction Mappings in Complete Intuitionistic Fuzzy Normed Linear Space," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 65-83, March.
    13. Saadati, Reza, 2009. "A note on “Some results on the IF-normed spaces”," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 206-213.
    14. Karakus, S. & Demirci, K. & Duman, O., 2008. "Statistical convergence on intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 763-769.
    15. Sharma, Sushil & Deshpande, Bhavana, 2009. "Common fixed point theorems for finite number of mappings without continuity and compatibility on intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2242-2256.
    16. Tanaka, Yosuke & Nakano, Shingo & Ohta, Shigetoshi & Mori, Keisuke & Horiuchi, Tanji, 2009. "Einstein–Friedmann equation, nonlinear dynamics and chaotic behaviours," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2159-2173.
    17. Chen, Qingjiang & Shi, Zhi, 2008. "Biorthogonal multiple vector-valued multivariate wavelet packets associated with a dilation matrix," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 323-332.
    18. Saadati, Reza, 2008. "On the L-fuzzy topological spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1419-1426.
    19. Mursaleen, M. & Mohiuddine, S.A., 2009. "Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet derivative," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1010-1015.
    20. Giordano, P. & Iovane, G. & Laserra, E., 2007. "El Naschie ϵ(∞) Cantorian structures with spatial pseudo-spherical symmetry: A possible description of the actual segregated universe," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1108-1117.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:3:p:781-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.