Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2006.08.024
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Proietti, Tommaso, 2003. "Forecasting the US unemployment rate," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 451-476, March.
- Laura Brown & Saeed Moshiri, 2004. "Unemployment variation over the business cycles: a comparison of forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 497-511.
- Yao, Albert W.L. & Chi, S.C. & Chen, C.K., 2005. "Development of an integrated Grey–fuzzy-based electricity management system for enterprises," Energy, Elsevier, vol. 30(15), pages 2759-2771.
- Franses, Philip Hans & Paap, Richard & Vroomen, Bjorn, 2004. "Forecasting unemployment using an autoregression with censored latent effects parameters," International Journal of Forecasting, Elsevier, vol. 20(2), pages 255-271.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- NGO, Hoang Anh & HOANG, Thai Nam, 2020. "A Rolling Optimized Nonlinear Grey Bernoulli Model RONGBM(1,1) and application in predicting total COVID-19 cases," OSF Preprints 6y95m, Center for Open Science.
- Yi-Chung Hu, 2021. "Forecasting tourism demand using fractional grey prediction models with Fourier series," Annals of Operations Research, Springer, vol. 300(2), pages 467-491, May.
- Yi-Chung Hu, 2021. "Developing grey prediction with Fourier series using genetic algorithms for tourism demand forecasting," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 315-331, February.
- Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
- Aysha Malik & Ejaz Hussain & Sofia Baig & Muhammad Fahim Khokhar, 2020. "Forecasting CO2 emissions from energy consumption in Pakistan under different scenarios: The China–Pakistan Economic Corridor," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 380-389, April.
- Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
- Michal Pavlicko & Mária Vojteková & Oľga Blažeková, 2022. "Forecasting of Electrical Energy Consumption in Slovakia," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
- Liu, Xiaomei & Xie, Naiming, 2019. "A nonlinear grey forecasting model with double shape parameters and its application," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 203-212.
- Dan Ma & Haibo Bai, 2015. "Groundwater inflow prediction model of karst collapse pillar: a case study for mining-induced groundwater inrush risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1319-1334, March.
- Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil," Energy, Elsevier, vol. 36(5), pages 2450-2458.
- Wang, Qiang & Song, Xiaoxin, 2019. "Forecasting China's oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM," Energy, Elsevier, vol. 183(C), pages 160-171.
- En-Chih Chang, 2018. "Improving Performance for Full-Bridge Inverter of Wind Energy Conversion System Using a Fast and Efficient Control Technique," Energies, MDPI, vol. 11(2), pages 1-16, January.
- Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
- Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
- Adriana AnaMaria Davidescu & Simona-Andreea Apostu & Liviu Adrian Stoica, 2021. "Socioeconomic Effects of COVID-19 Pandemic: Exploring Uncertainty in the Forecast of the Romanian Unemployment Rate for the Period 2020–2023," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
- Zheng-Xin Wang, 2017. "A Weighted Non-linear Grey Bernoulli Model for Forecasting Non-linear Economic Time Series with Small Data Sets," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(1), pages 169-186.
- Ling-Ling Pei & Qin Li, 2019. "Forecasting Quarterly Sales Volume of the New Energy Vehicles Industry in China Using a Data Grouping Approach-Based Nonlinear Grey Bernoulli Model," Sustainability, MDPI, vol. 11(5), pages 1-15, February.
- Yi-Chung Hu, 2022. "Demand forecasting of green metal materials using non-equidistant grey prediction with robust nonlinear interval regression analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9809-9831, August.
- Wen-Ze Wu & Tao Zhang & Chengli Zheng, 2019. "A Novel Optimized Nonlinear Grey Bernoulli Model for Forecasting China’s GDP," Complexity, Hindawi, vol. 2019, pages 1-10, October.
- Yin, Chen & Mao, Shuhua, 2023. "Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting," Energy, Elsevier, vol. 269(C).
- Lao, Tongfei & Sun, Yanrui, 2022. "Predicting the production and consumption of natural gas in China by using a new grey forecasting method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 295-315.
- Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Elena Olmedo, 2014. "Forecasting Spanish Unemployment Using Near Neighbour and Neural Net Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 43(2), pages 183-197, February.
- Muneeb Ahmad & Yousaf Ali Khan & Chonghui Jiang & Syed Jawad Haider Kazmi & Syed Zaheer Abbas, 2023. "The impact of COVID‐19 on unemployment rate: An intelligent based unemployment rate prediction in selected countries of Europe," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 528-543, January.
- Tanujit Chakraborty & Ashis Kumar Chakraborty & Munmun Biswas & Sayak Banerjee & Shramana Bhattacharya, 2021. "Unemployment Rate Forecasting: A Hybrid Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 183-201, January.
- Adriana AnaMaria Davidescu & Simona-Andreea Apostu & Liviu Adrian Stoica, 2021. "Socioeconomic Effects of COVID-19 Pandemic: Exploring Uncertainty in the Forecast of the Romanian Unemployment Rate for the Period 2020–2023," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
- D'Amuri, Francesco & Marcucci, Juri, 2009.
"‘Google it!’ Forecasting the US unemployment rate with a Google job search index,"
ISER Working Paper Series
2009-32, Institute for Social and Economic Research.
- D'Amuri, Francesco/FD & Marcucci, Juri/JM, 2009. ""Google it!" Forecasting the US unemployment rate with a Google job search index," MPRA Paper 18248, University Library of Munich, Germany.
- Francesco D’Amuri & Juri Marcucci, 2010. "“Google it!”Forecasting the US Unemployment Rate with a Google Job Search index," Working Papers 2010.31, Fondazione Eni Enrico Mattei.
- Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2008.
"Modelling the US, UK and Japanese unemployment rates: Fractional integration and structural breaks,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4998-5013, July.
- Luis A. Gil-Alana & Guglielmo M. Caporale, 2008. "Modelling the US, the UK and Japanese unemployment rates. Fractional integrationand structural breaks," Faculty Working Papers 11/08, School of Economics and Business Administration, University of Navarra.
- Costas Milas & Phil Rothman, 2005. "Multivariate STAR Unemployment Rate Forecasts," Econometrics 0502010, University Library of Munich, Germany.
- Floros, Ch., 2005. "Forecasting the UK Unemployment Rate: Model Comparisons," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 2(4), pages 57-72.
- Pär Österholm, 2010.
"Improving Unemployment Rate Forecasts Using Survey Data,"
Finnish Economic Papers, Finnish Economic Association, vol. 23(1), pages 16-26, Spring.
- Österholm, Pär, 2009. "Improving Unemployment Rate Forecasts Using Survey Data," Working Papers 112, National Institute of Economic Research.
- Olmedo, Elena, 2011. "Is there chaos in the Spanish labour market?," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1045-1053.
- Milas, Costas & Rothman, Philip, 2008.
"Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts,"
International Journal of Forecasting, Elsevier, vol. 24(1), pages 101-121.
- Costas Milas & Philip Rothman, 2007. "Out-of-Sample Forecasting of Unemployment Rates with Pooled STVECM Forecasts," Working Paper series 49_07, Rimini Centre for Economic Analysis.
- Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004.
"Forecasting economic and financial time-series with non-linear models,"
International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
- Michael P. Clements & Philip Hans Franses & Norman R. Swanson, 2003. "Forecasting economic and financial time-series with non-linear models," Departmental Working Papers 200309, Rutgers University, Department of Economics.
- D’Amuri, Francesco & Marcucci, Juri, 2017.
"The predictive power of Google searches in forecasting US unemployment,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
- Francesco D'Amuri & Juri Marcucci, 2012. "The predictive power of Google searches in forecasting unemployment," Temi di discussione (Economic working papers) 891, Bank of Italy, Economic Research and International Relations Area.
- An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
- S. Madhumitha & Anubhab Pattanayak & K.S. Kavi Kumar, 2021. "Crop Diversity and Resilience to Droughts: Evidence from Indian Agriculture," Working Papers 2021-206, Madras School of Economics,Chennai,India.
- Mihai Mutascu & Scott W. Hegerty, 2023.
"Predicting the contribution of artificial intelligence to unemployment rates: an artificial neural network approach,"
Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(2), pages 400-416, June.
- Mihai Mutascu & Scott Hegerty, 2023. "Predicting the contribution of artificial intelligence to unemployment rates: an artificial neural network approach," Post-Print hal-04273887, HAL.
- Jan-Erik Antipin & Farid Jimmy Boumediene & Pär Österholm, 2014.
"On the Usefulness of Constant Gain Least Squares when Forecasting the Unemployment Rate,"
Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot GmbH, Berlin, vol. 60(4), pages 315-336.
- Antipin, Jan-Erik & Boumediene, Farid Jimmy & Österholm, Pär, 2013. "On the Usefulness of Constant Gain Least Squares when Forecasting the Unemployment Rate," Working Papers 129, National Institute of Economic Research.
- Proietti, Tommaso, 2005. "New algorithms for dating the business cycle," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 477-498, April.
- Bårdsen Gunnar & Hurn Stanley & McHugh Zöe, 2012.
"Asymmetric Unemployment Rate Dynamics in Australia,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-22, January.
- Gunnar Bårdsen & Stan Hurn & Zoë McHugh, 2010. "Asymmetric unemployment rate dynamics in Australia," Working Paper Series 10810, Department of Economics, Norwegian University of Science and Technology.
- Gunnar Bardsen & Stan Hurn & Zoe McHugh, 2011. "Asymmetric unemployment rate dynamics in Australia," NCER Working Paper Series 71, National Centre for Econometric Research.
- Gunnar Bårdsen & Stan Hurn & Zoë McHugh, 2010. "Asymmetric unemployment rate dynamics in Australia," CREATES Research Papers 2010-02, Department of Economics and Business Economics, Aarhus University.
- Miquel Clar-Lopez & Jordi López-Tamayo & Raúl Ramos, 2014. "Unemployment forecasts, time varying coefficient models and the Okun’s law in Spanish regions," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 247-262.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:1:p:278-287. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.