IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1731262.html
   My bibliography  Save this article

A Novel Optimized Nonlinear Grey Bernoulli Model for Forecasting China’s GDP

Author

Listed:
  • Wen-Ze Wu
  • Tao Zhang
  • Chengli Zheng

Abstract

The nonlinear grey Bernoulli model, abbreviated as NGBM(1,1), has been successfully applied to control, prediction, and decision-making fields, especially in the prediction of nonlinear small sample time series. However, there are still some problems in improving the prediction accuracy of NGBM(1,1). In this paper, we propose a novel optimized nonlinear grey Bernoulli model for forecasting Chinaʼs GDP. In the new model, the structure and parameters of NGBM(1,1) are optimized simultaneously. Especially, the latest item of first-order accumulative generating operator (1-AGO) sequence is taken as the initial condition, then background value is reconstructed by optimizing weights of neighbor values in 1-AGO sequence, which is based on minimizing the sum of absolute percentage errors, and finally, we establish the new model based on the rolling mechanism. Prediction accuracy of the proposed model is investigated through some simulations and a real example application, and the proposed model is applied to forecast the annual GDP in China from 2019 to 2023.

Suggested Citation

  • Wen-Ze Wu & Tao Zhang & Chengli Zheng, 2019. "A Novel Optimized Nonlinear Grey Bernoulli Model for Forecasting China’s GDP," Complexity, Hindawi, vol. 2019, pages 1-10, October.
  • Handle: RePEc:hin:complx:1731262
    DOI: 10.1155/2019/1731262
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1731262.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1731262.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1731262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zheng-Xin Wang, 2017. "A Weighted Non-linear Grey Bernoulli Model for Forecasting Non-linear Economic Time Series with Small Data Sets," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(1), pages 169-186.
    2. Ling-Ling Pei & Qin Li, 2019. "Forecasting Quarterly Sales Volume of the New Energy Vehicles Industry in China Using a Data Grouping Approach-Based Nonlinear Grey Bernoulli Model," Sustainability, MDPI, vol. 11(5), pages 1-15, February.
    3. Zeng, Bo & Li, Chuan, 2016. "Forecasting the natural gas demand in China using a self-adapting intelligent grey model," Energy, Elsevier, vol. 112(C), pages 810-825.
    4. Liu, Xiaomei & Xie, Naiming, 2019. "A nonlinear grey forecasting model with double shape parameters and its application," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 203-212.
    5. Papadimitriou, Theophilos & Gogas, Periklis & Stathakis, Efthimios, 2014. "Forecasting energy markets using support vector machines," Energy Economics, Elsevier, vol. 44(C), pages 135-142.
    6. Huiming Duan & Xinping Xiao & Lingling Pei, 2017. "Forecasting the Short-Term Traffic Flow in the Intelligent Transportation System Based on an Inertia Nonhomogenous Discrete Gray Model," Complexity, Hindawi, vol. 2017, pages 1-16, July.
    7. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    8. Chen, Chun-I, 2008. "Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 278-287.
    9. An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Huiming & Pang, Xinyu, 2021. "A multivariate grey prediction model based on energy logistic equation and its application in energy prediction in China," Energy, Elsevier, vol. 229(C).
    2. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    3. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    4. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Ding, Song, 2018. "A novel self-adapting intelligent grey model for forecasting China's natural-gas demand," Energy, Elsevier, vol. 162(C), pages 393-407.
    6. Huiming Duan & Xinping Xiao, 2019. "A Multimode Dynamic Short-Term Traffic Flow Grey Prediction Model of High-Dimension Tensors," Complexity, Hindawi, vol. 2019, pages 1-18, June.
    7. Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    9. Xiong, Xin & Hu, Xi & Guo, Huan, 2021. "A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption," Energy, Elsevier, vol. 234(C).
    10. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
    11. Liu, Xiaomei & Xie, Naiming, 2019. "A nonlinear grey forecasting model with double shape parameters and its application," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 203-212.
    12. Wenqing Wu & Xin Ma & Bo Zeng & Yuanyuan Zhang & Wanpeng Li, 2021. "Forecasting short-term solar energy generation in Asia Pacific using a nonlinear grey Bernoulli model with time power term," Energy & Environment, , vol. 32(5), pages 759-783, August.
    13. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    14. Zhou, Weijie & Wu, Xiaoli & Ding, Song & Pan, Jiao, 2020. "Application of a novel discrete grey model for forecasting natural gas consumption: A case study of Jiangsu Province in China," Energy, Elsevier, vol. 200(C).
    15. Zeng, Bo & Li, Chuan, 2016. "Forecasting the natural gas demand in China using a self-adapting intelligent grey model," Energy, Elsevier, vol. 112(C), pages 810-825.
    16. Lao, Tongfei & Sun, Yanrui, 2022. "Predicting the production and consumption of natural gas in China by using a new grey forecasting method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 295-315.
    17. Ling-Ling Pei & Qin Li, 2019. "Forecasting Quarterly Sales Volume of the New Energy Vehicles Industry in China Using a Data Grouping Approach-Based Nonlinear Grey Bernoulli Model," Sustainability, MDPI, vol. 11(5), pages 1-15, February.
    18. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    19. Peng Zhang & Xin Ma & Kun She, 2019. "Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    20. Guo-Feng Fan & An Wang & Wei-Chiang Hong, 2018. "Combining Grey Model and Self-Adapting Intelligent Grey Model with Genetic Algorithm and Annual Share Changes in Natural Gas Demand Forecasting," Energies, MDPI, vol. 11(7), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1731262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.