The impact of COVID‐19 on unemployment rate: An intelligent based unemployment rate prediction in selected countries of Europe
Author
Abstract
Suggested Citation
DOI: 10.1002/ijfe.2434
Download full text from publisher
References listed on IDEAS
- Galbraith, John W. & van Norden, Simon, 2019. "Asymmetry in unemployment rate forecast errors," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1613-1626.
- Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005.
"Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination,"
International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
- Teräsvirta, Timo & van Dijk, Dick & Medeiros, Marcelo, 2004. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," SSE/EFI Working Paper Series in Economics and Finance 561, Stockholm School of Economics, revised 09 Nov 2004.
- Timo Teräsvirta & Dick van Dijk & Marcelo Cunha Medeiros, 2004. "Linear models, smooth transition autoregressions and neural networks for forecasting macroeconomic time series: A reexamination," Textos para discussão 485, Department of Economics PUC-Rio (Brazil).
- Olivier J. Blanchard & Daniel Leigh, 2013.
"Growth Forecast Errors and Fiscal Multipliers,"
American Economic Review, American Economic Association, vol. 103(3), pages 117-120, May.
- Mr. Olivier J Blanchard & Mr. Daniel Leigh, 2013. "Growth Forecast Errors and Fiscal Multipliers," IMF Working Papers 2013/001, International Monetary Fund.
- Olivier J. Blanchard & Daniel Leigh, 2013. "Growth Forecast Errors and Fiscal Multipliers," NBER Working Papers 18779, National Bureau of Economic Research, Inc.
- Milas, Costas & Rothman, Philip, 2008.
"Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts,"
International Journal of Forecasting, Elsevier, vol. 24(1), pages 101-121.
- Costas Milas & Philip Rothman, 2007. "Out-of-Sample Forecasting of Unemployment Rates with Pooled STVECM Forecasts," Working Paper series 49_07, Rimini Centre for Economic Analysis.
- Edlund, Per-Olov & Karlsson, Sune, 1993. "Forecasting the Swedish unemployment rate VAR vs. transfer function modelling," International Journal of Forecasting, Elsevier, vol. 9(1), pages 61-76, April.
- Proietti, Tommaso, 2003. "Forecasting the US unemployment rate," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 451-476, March.
- Nagao, Shintaro & Takeda, Fumiko & Tanaka, Riku, 2019. "Nowcasting of the U.S. unemployment rate using Google Trends," Finance Research Letters, Elsevier, vol. 30(C), pages 103-109.
- Laura Brown & Saeed Moshiri, 2004. "Unemployment variation over the business cycles: a comparison of forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 497-511.
- Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
- Vicente, María Rosalía & López-Menéndez, Ana J. & Pérez, Rigoberto, 2015. "Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 132-139.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- repec:hal:journl:hal-04675599 is not listed on IDEAS
- Ozili, Peterson K & Oladipo, Oladije, 2024. "Impact of credit expansion and contraction on unemployment," MPRA Paper 121525, University Library of Munich, Germany.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tanujit Chakraborty & Ashis Kumar Chakraborty & Munmun Biswas & Sayak Banerjee & Shramana Bhattacharya, 2021. "Unemployment Rate Forecasting: A Hybrid Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 183-201, January.
- Adriana AnaMaria Davidescu & Simona-Andreea Apostu & Liviu Adrian Stoica, 2021. "Socioeconomic Effects of COVID-19 Pandemic: Exploring Uncertainty in the Forecast of the Romanian Unemployment Rate for the Period 2020–2023," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
- Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
- Emilio Zanetti Chini, 2013.
"Generalizing smooth transition autoregressions,"
CREATES Research Papers
2013-32, Department of Economics and Business Economics, Aarhus University.
- Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CEIS Research Paper 294, Tor Vergata University, CEIS, revised 25 Sep 2014.
- Emilio Zanetti Chini, 2017. "Generalizing Smooth Transition Autoregressions," DEM Working Papers Series 138, University of Pavia, Department of Economics and Management.
- Emilio Zanetti Chini, 2016. "Generalizing smooth transition autoregressions," DEM Working Papers Series 114, University of Pavia, Department of Economics and Management.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Milas, Costas & Rothman, Philip, 2008.
"Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts,"
International Journal of Forecasting, Elsevier, vol. 24(1), pages 101-121.
- Costas Milas & Philip Rothman, 2007. "Out-of-Sample Forecasting of Unemployment Rates with Pooled STVECM Forecasts," Working Paper series 49_07, Rimini Centre for Economic Analysis.
- Bjarni G. Einarsson, 2024. "Online Monitoring of Policy Optimality," Economics wp95, Department of Economics, Central bank of Iceland.
- Jeong, Kwang-Seuk & Kim, Dong-Kyun & Jung, Jong-Mun & Kim, Myoung-Chul & Joo, Gea-Jae, 2008. "Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics," Ecological Modelling, Elsevier, vol. 211(3), pages 292-300.
- Simionescu, Mihaela & Cifuentes-Faura, Javier, 2022. "Can unemployment forecasts based on Google Trends help government design better policies? An investigation based on Spain and Portugal," Journal of Policy Modeling, Elsevier, vol. 44(1), pages 1-21.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- Mehdi Khashei & Zahra Hajirahimi, 2017. "Performance evaluation of series and parallel strategies for financial time series forecasting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-24, December.
- Mihaela Simionescu & Javier Cifuentes-Faura, 2022. "Forecasting National and Regional Youth Unemployment in Spain Using Google Trends," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(3), pages 1187-1216, December.
- Barnichon, Regis & Garda, Paula, 2016.
"Forecasting unemployment across countries: The ins and outs,"
European Economic Review, Elsevier, vol. 84(C), pages 165-183.
- Barnichon, Regis & Garda, Paula, 2015. "Forecasting Unemployment across Countries: the Ins and Outs," CEPR Discussion Papers 10910, C.E.P.R. Discussion Papers.
- Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022.
"A neural network ensemble approach for GDP forecasting,"
Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
- Luigi Longo & Massimo Riccaboni & Armando Rungi, 2021. "A Neural Network Ensemble Approach for GDP Forecasting," Working Papers 02/2021, IMT School for Advanced Studies Lucca, revised Mar 2021.
- Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
- Regis Barnichon & Christopher J. Nekarda, 2012.
"The Ins and Outs of Forecasting Unemployment: Using Labor Force Flows to Forecast the Labor Market,"
Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 43(2 (Fall)), pages 83-131.
- Régis Barnichon & Christopher J. Nekarda, 2013. "The ins and outs of forecasting unemployment: Using labor force flows to forecast the labor market," Finance and Economics Discussion Series 2013-19, Board of Governors of the Federal Reserve System (U.S.).
- Elena Olmedo, 2014. "Forecasting Spanish Unemployment Using Near Neighbour and Neural Net Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 43(2), pages 183-197, February.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Chopra, Ritika & Sharma, Gagan Deep & Pereira, Vijay, 2024. "Identifying Bulls and bears? A bibliometric review of applying artificial intelligence innovations for stock market prediction," Technovation, Elsevier, vol. 135(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:28:y:2023:i:1:p:528-543. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.