IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i8d10.1007_s10668-021-01846-7.html
   My bibliography  Save this article

Demand forecasting of green metal materials using non-equidistant grey prediction with robust nonlinear interval regression analysis

Author

Listed:
  • Yi-Chung Hu

    (Chung Yuan Christian University)

Abstract

The main advantages of magnesium alloys are that they are lightweight, easy to recycle, and have high vibration absorption. These unique characteristics make magnesium alloys important green metal materials for manufacturing, especially for the automotive and 3C products industries. The developing trends of these related industries can be recognized by forecasting the demand for magnesium alloys. This study develops grey prediction power models to forecast the demand for such a promising green metal material. Grey prediction is an appropriate technique because available data regarding the demand for magnesium alloys are not in line with any statistical assumptions. In particular, because outliers might cause a deterioration of forecasting performance, a robust nonlinear interval regression analysis with neural networks is applied to detect outliers by estimating data intervals. Then, a power model is applied to the newly generated non-equidistant data sequence without outliers. Residual modification is further considered here to improve the forecasting performance of the power model. The forecasting abilities of the proposed grey residual modification models are verified using actual magnesium alloy demand data. The experimental results for ex-post testing show that the mean absolute percentage errors of the proposed models that can work on non-equidistant data were minimal among all considered models.

Suggested Citation

  • Yi-Chung Hu, 2022. "Demand forecasting of green metal materials using non-equidistant grey prediction with robust nonlinear interval regression analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9809-9831, August.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:8:d:10.1007_s10668-021-01846-7
    DOI: 10.1007/s10668-021-01846-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01846-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01846-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Chun-I, 2008. "Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 278-287.
    2. Bo Zeng & Chuan Li & Xue-Yu Zhou & Xian-Jun Long, 2014. "Prediction Model of Interval Grey Numbers with a Real Parameter and Its Application," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-12, August.
    3. Yi-Chung Hu & Peng Jiang & Ping-Chuan Lee, 2019. "Forecasting tourism demand by incorporating neural networks into Grey–Markov models," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(1), pages 12-20, January.
    4. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    5. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    2. Yi-Chung Hu & Peng Jiang & Jung-Fa Tsai & Ching-Ying Yu, 2021. "An Optimized Fractional Grey Prediction Model for Carbon Dioxide Emissions Forecasting," IJERPH, MDPI, vol. 18(2), pages 1-12, January.
    3. Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Yi-Chung Hu, 2021. "Forecasting tourism demand using fractional grey prediction models with Fourier series," Annals of Operations Research, Springer, vol. 300(2), pages 467-491, May.
    5. Hang Jiang & Peng Jiang & Peiyi Kong & Yi-Chung Hu & Cheng-Wen Lee, 2020. "A Predictive Analysis of China’s CO 2 Emissions and OFDI with a Nonlinear Fractional-Order Grey Multivariable Model," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    6. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
    7. Aysha Malik & Ejaz Hussain & Sofia Baig & Muhammad Fahim Khokhar, 2020. "Forecasting CO2 emissions from energy consumption in Pakistan under different scenarios: The China–Pakistan Economic Corridor," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 380-389, April.
    8. Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Yi-Chung Hu, 2021. "Developing grey prediction with Fourier series using genetic algorithms for tourism demand forecasting," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 315-331, February.
    10. Lao, Tongfei & Sun, Yanrui, 2022. "Predicting the production and consumption of natural gas in China by using a new grey forecasting method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 295-315.
    11. Ling-Ling Pei & Qin Li, 2019. "Forecasting Quarterly Sales Volume of the New Energy Vehicles Industry in China Using a Data Grouping Approach-Based Nonlinear Grey Bernoulli Model," Sustainability, MDPI, vol. 11(5), pages 1-15, February.
    12. Yin, Chen & Mao, Shuhua, 2023. "Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting," Energy, Elsevier, vol. 269(C).
    13. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    14. Wang, Zheng-Xin & Jv, Yue-Qi, 2021. "A non-linear systematic grey model for forecasting the industrial economy-energy-environment system," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    15. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    16. Huayong Niu & Zhishuo Zhang & Manting Luo, 2022. "Evaluation and Prediction of Low-Carbon Economic Efficiency in China, Japan and South Korea: Based on DEA and Machine Learning," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    17. Wen-Ze Wu & Chong Liu & Wanli Xie & Mark Goh & Tao Zhang, 2023. "Predictive analysis of the industrial water-waste-energy system using an optimised grey approach: A case study in China," Energy & Environment, , vol. 34(5), pages 1639-1656, August.
    18. Nyoni, Thabani & Mutongi, Chipo, 2019. "Modeling and forecasting carbon dioxide emissions in China using Autoregressive Integrated Moving Average (ARIMA) models," MPRA Paper 93984, University Library of Munich, Germany.
    19. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    20. Shen, Jian-jian & Cheng, Chun-tian & Jia, Ze-bin & Zhang, Yang & Lv, Quan & Cai, Hua-xiang & Wang, Bang-can & Xie, Meng-fei, 2022. "Impacts, challenges and suggestions of the electricity market for hydro-dominated power systems in China," Renewable Energy, Elsevier, vol. 187(C), pages 743-759.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:8:d:10.1007_s10668-021-01846-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.