IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v30y2005i15p2759-2771.html
   My bibliography  Save this article

Development of an integrated Grey–fuzzy-based electricity management system for enterprises

Author

Listed:
  • Yao, Albert W.L.
  • Chi, S.C.
  • Chen, C.K.

Abstract

The goal of this project is to develop a PC-based electricity management system for our university. This proposed demand control electricity management system is embedded with an intelligent predictor and controller, in order to forecast time-variant electric demand online and to manage the electric facilities real-time. This paper presents the design of a fuzzy logic-based electric controller and concludes with a discussion of this study. The proposed hybrid PC web-based intelligent electric demand control system is able to provide an efficient means to control and manage the use of electricity for enterprises.

Suggested Citation

  • Yao, Albert W.L. & Chi, S.C. & Chen, C.K., 2005. "Development of an integrated Grey–fuzzy-based electricity management system for enterprises," Energy, Elsevier, vol. 30(15), pages 2759-2771.
  • Handle: RePEc:eee:energy:v:30:y:2005:i:15:p:2759-2771
    DOI: 10.1016/j.energy.2005.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544205000174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2005.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaikh, Faheemullah & Ji, Qiang & Shaikh, Pervez Hameed & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2017. "Forecasting China’s natural gas demand based on optimised nonlinear grey models," Energy, Elsevier, vol. 140(P1), pages 941-951.
    2. An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
    3. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil," Energy, Elsevier, vol. 36(5), pages 2450-2458.
    4. Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
    5. Chen, Chun-I, 2008. "Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 278-287.
    6. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    7. Zahedi, Gholamreza & Azizi, Saeed & Bahadori, Alireza & Elkamel, Ali & Wan Alwi, Sharifah R., 2013. "Electricity demand estimation using an adaptive neuro-fuzzy network: A case study from the Ontario province – Canada," Energy, Elsevier, vol. 49(C), pages 323-328.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:15:p:2759-2771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.