IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v26y2005i2p665-670.html
   My bibliography  Save this article

Kähler-like manifolds, Weyl spinor particles and E-infinity high energy physics

Author

Listed:
  • El Naschie, M.S.

Abstract

The Kähler-like fuzzy manifold of E-infinity theory is introduced. The Betti numbers and other topological invariants of this manifold are determined. In particular it is found that the Euler characteristic is equal to 26+k=26.18033989 while the absolute value of the inverse signature is equal to the electromagnetic fine structure times D(10)=10. The relation to Weyl spinor is discussed.

Suggested Citation

  • El Naschie, M.S., 2005. "Kähler-like manifolds, Weyl spinor particles and E-infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 665-670.
  • Handle: RePEc:eee:chsofr:v:26:y:2005:i:2:p:665-670
    DOI: 10.1016/j.chaos.2005.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905001141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2005. "Experimental and theoretical arguments for the number and the mass of the Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1091-1098.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ata, Erhan & Yayli, Yusuf, 2009. "Split quaternions and semi-Euclidean projective spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1910-1915.
    2. El Naschie, M.S., 2005. "‘t Hooft ultimate building blocks and space–time as an infinite dimensional set of transfinite discrete points," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 521-524.
    3. Marek-Crnjac, L., 2007. "The maximum number of elementary particles in a super symmetric extension of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1631-1636.
    4. Gutiérrez García, J. & de Prada Vicente, M.A., 2007. "Further results on L-valued filters," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 162-172.
    5. El Naschie, M.S., 2005. "Spinorial content of the standard model, a different look at super-symmetry and fuzzy E-infinity hyper Kähler," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 303-311.
    6. Munroe, Ray, 2009. "The MSSM, E8, Hyperflavor E12 and E∞ TOE’s compared and contrasted," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1557-1560.
    7. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ElOkaby, Ayman A., 2007. "A short review of the Higgs boson mass and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 14-25.
    2. El Naschie, M.S., 2008. "Bounds on the number of possible Higgs particles using grand unification and exceptional Lie groups," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 633-637.
    3. He, Ji-Huan, 2007. "E-Infinity theory and the Higgs field," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 782-786.
    4. Marek-Crnjac, L., 2006. "Different Higgs models and the number of Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 575-579.
    5. Marek-Crnjac, L., 2007. "The maximum number of elementary particles in a super symmetric extension of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1631-1636.
    6. Camcı, Çetin & İlarslan, Kazım & Kula, Levent & Hacısalihoğlu, H. Hilmi, 2009. "Harmonic curvatures and generalized helices in En," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2590-2596.
    7. Ekici, Erdal & Noiri, Takashi, 2009. "Decompositions of continuity, α-continuity and AB-continuity," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2055-2061.
    8. Naschie, M.S. El, 2005. "On the possibility of six gravity related particles in the standard model of high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1491-1496.
    9. Şenol, Ali & Yayli, Yusuf, 2009. "LC helices in space forms," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2115-2119.
    10. Külahcı, Mihriban & Bektaş, Mehmet & Ergüt, Mahmut, 2009. "On harmonic curvatures of a Frenet curve in Lorentzian space," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1668-1675.
    11. El Naschie, M.S., 2005. "Determining the mass of the Higgs and the electroweak bosons," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 899-905.
    12. Falcón, Sergio & Plaza, Ángel, 2007. "The k-Fibonacci sequence and the Pascal 2-triangle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 38-49.
    13. Falcón, Sergio & Plaza, Ángel, 2008. "On the 3-dimensional k-Fibonacci spirals," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 993-1003.
    14. El Naschie, M.S., 2005. "On a class of fuzzy Kähler-like manifolds," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 257-261.
    15. Falcón, Sergio & Plaza, Ángel, 2007. "On the Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1615-1624.
    16. Falcón, Sergio & Plaza, Ángel, 2008. "The k-Fibonacci hyperbolic functions," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 409-420.
    17. El Naschie, M.S., 2008. "Exact non-perturbative derivation of gravity’s G¯4 fine structure constant, the mass of the Higgs and elementary black holes," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 346-359.
    18. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    19. El Naschie, M.S., 2006. "Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 297-330.
    20. Tanaka, Yosuke, 2008. "Hadron mass, Regge pole model and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 1-15.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:26:y:2005:i:2:p:665-670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.