IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924011147.html
   My bibliography  Save this article

Data-driven prediction of vortex solitons and multipole solitons in whispering gallery mode microresonator

Author

Listed:
  • Yu, Zhengxin
  • Ren, Longfei
  • Li, Lang
  • Dai, Chaoqing
  • Wang, Yueyue

Abstract

Deep learning incorporating physics knowledge has become a powerful tool for studying the dynamic behavior of high-dimensional nonlinear systems. In this paper, the two-stage mini-batch resampling of adaptive physics-informed neural network (TMA-PINN) method is proposed to solve the (2 + 1)-dimensional variable-coefficient Lugiato-Lefever equation (vLLE). The vortex soliton in the WGM microresonator with different external excitation is investigated by TMA-PINN. It is found that external excitation can cause the rotation of vortex solitons. In addition, the effect of topological charge and external excitation on the dynamical characteristics of spatial solitons including vortex solitons and multipole solitons are investigated. The results show that the final shape of the rotation of vortex solitons and the number of azimuth lobes of multipole solitons are controlled by topological charges. Compared with classical PINN, TMA-PINN can better handle the gradient balance of various loss terms in (2 + 1)-dimensional vLLE to reconstruct the dynamic behavior of WGM microresonator solitons, having potential applications in other nonlinear systems.

Suggested Citation

  • Yu, Zhengxin & Ren, Longfei & Li, Lang & Dai, Chaoqing & Wang, Yueyue, 2024. "Data-driven prediction of vortex solitons and multipole solitons in whispering gallery mode microresonator," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011147
    DOI: 10.1016/j.chaos.2024.115562
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong Geng & Heng Zhou & Xinjie Han & Wenwen Cui & Qiang Zhang & Boyuan Liu & Guangwei Deng & Qiang Zhou & Kun Qiu, 2022. "Coherent optical communications using coherence-cloned Kerr soliton microcombs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. P. Del’Haye & A. Schliesser & O. Arcizet & T. Wilken & R. Holzwarth & T. J. Kippenberg, 2007. "Optical frequency comb generation from a monolithic microresonator," Nature, Nature, vol. 450(7173), pages 1214-1217, December.
    3. Hubert S. Stokowski & Devin J. Dean & Alexander Y. Hwang & Taewon Park & Oguz Tolga Celik & Timothy P. McKenna & Marc Jankowski & Carsten Langrock & Vahid Ansari & Martin M. Fejer & Amir H. Safavi-Nae, 2024. "Integrated frequency-modulated optical parametric oscillator," Nature, Nature, vol. 627(8002), pages 95-100, March.
    4. Prabhav Borate & Jacques Rivière & Chris Marone & Ankur Mali & Daniel Kifer & Parisa Shokouhi, 2023. "Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Yanjing Zhu & Ruiqi Huang & Zhourui Wu & Simin Song & Liming Cheng & Rongrong Zhu, 2021. "Deep learning-based predictive identification of neural stem cell differentiation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Liu, Bokai & Wang, Yizheng & Rabczuk, Timon & Olofsson, Thomas & Lu, Weizhuo, 2024. "Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks," Renewable Energy, Elsevier, vol. 220(C).
    7. Jaganathan, Meiyazhagan & Bakthavatchalam, Tamil Arasan & Vadivel, Murugesan & Murugan, Selvakumar & Balu, Gopinath & Sankarasubbu, Malaikannan & Ramaswamy, Radha & Sethuraman, Vijayalakshmi & Malomed, 2023. "Data-driven multi-valley dark solitons of multi-component Manakov Model using Physics-Informed Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Fang, Yin & Bo, Wen-Bo & Wang, Ru-Ru & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Predicting nonlinear dynamics of optical solitons in optical fiber via the SCPINN," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    9. Grégory Moille & Jordan Stone & Michal Chojnacky & Rahul Shrestha & Usman A. Javid & Curtis Menyuk & Kartik Srinivasan, 2023. "Kerr-induced synchronization of a cavity soliton to an optical reference," Nature, Nature, vol. 624(7991), pages 267-274, December.
    10. Jianfei Huang & Xinchun Cheng & Yuying Shen & Dewen Kong & Jixin Wang, 2021. "Deep Learning-Based Prediction of Throttle Value and State for Wheel Loaders," Energies, MDPI, vol. 14(21), pages 1-16, November.
    11. Cao, Qi-Hao & Geng, Kai-Li & Zhu, Bo-Wei & Wang, Yue-Yue & Dai, Chao-Qing, 2023. "Scalar vortex solitons and vector dipole solitons in whispering gallery mode optical microresonators," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Yufei & Sajadi, S. Mohammad & Baghaei, S. & Rezaei, R. & Li, Wei, 2024. "Digital technologies in sports: Opportunities, challenges, and strategies for safeguarding athlete wellbeing and competitive integrity in the digital era," Technology in Society, Elsevier, vol. 77(C).
    2. Fang, Yin & Zhu, Bo-Wei & Bo, Wen-Bo & Wang, Yue-Yue & Dai, Chao-Qing, 2023. "Data-driven prediction of spatial optical solitons in fractional diffraction," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    3. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Yin, Yu-Hang & Lü, Xing, 2024. "Multi-parallelized PINNs for the inverse problem study of NLS typed equations in optical fiber communications: Discovery on diverse high-order terms and variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Jiang, Jun-Hang & Si, Zhi-Zeng & Dai, Chao-Qing & Wu, Bin, 2024. "Prediction of multipole vector solitons and model parameters for coupled saturable nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    6. Liu, Yilou & Zhao, Rui-Shan & Zhang, Kai-Kai & Jia, Ziyu & Wan, Ren-Gang & Sun, Hui & Yang, Wen-Xing & Xie, Xiao-Tao, 2024. "Optical frequency combs and chaos in a hybrid atom–cavity optomagnonical system via the synergy of double-probe fields," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    7. Liang Wang & Jingyi Du & Qilu Liu & Dongshuang Wang & Wenhan Wang & Ming Lei & Keyi Li & Yiwei Li & Aijun Hao & Yuanhua Sang & Fan Yi & Wenjuan Zhou & Hong Liu & Chuanbin Mao & Jichuan Qiu, 2024. "Wrapping stem cells with wireless electrical nanopatches for traumatic brain injury therapy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Arno Eichberger & Zsolt Szalay & Martin Fellendorf & Henry Liu, 2022. "Advances in Automated Driving Systems," Energies, MDPI, vol. 15(10), pages 1-5, May.
    9. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Thibault Wildi & Alexander E. Ulanov & Thibault Voumard & Bastian Ruhnke & Tobias Herr, 2024. "Phase-stabilised self-injection-locked microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Zhu, Yu & Yang, Jing & Chen, Zezhou & Qin, Wei & Li, Jitao, 2024. "Ring-like partially nonlocal extreme wave of a (3+1)-dimensional NLS system with partially nonlocal nonlinearity and external potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. Wang, Xin & Huang, Kai-Wei & Qiu, Qing-Yang & Xiong, Hao, 2023. "Nonreciprocal double-carrier frequency combs in cavity magnonics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    13. Qin, Chun-Yan & Zhang, Run-Fa & Li, Yao-Hong, 2024. "Various exact solutions of the (4+1)-dimensional Boiti–Leon–Manna–Pempinelli-like equation by using bilinear neural network method," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    14. Wang, Xiaoli & Wu, Zekang & Song, Jin & Han, Wenjing & Yan, Zhenya, 2024. "Data-driven soliton solutions and parameters discovery of the coupled nonlinear wave equations via a deep learning method," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    15. Yuanbin Liu & Hongyi Zhang & Jiacheng Liu & Liangjun Lu & Jiangbing Du & Yu Li & Zuyuan He & Jianping Chen & Linjie Zhou & Andrew W. Poon, 2024. "Parallel wavelength-division-multiplexed signal transmission and dispersion compensation enabled by soliton microcombs and microrings," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Zhu, Yu & Yang, Jing & Zhang, Yutong & Qin, Wei & Wang, Shaohui & Li, Jitao, 2024. "Ring-like double-breathers in the partially nonlocal medium with different diffraction characteristics in both directions under the external potential," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    17. Cao, Qi-Hao & Geng, Kai-Li & Zhu, Bo-Wei & Wang, Yue-Yue & Dai, Chao-Qing, 2023. "Scalar vortex solitons and vector dipole solitons in whispering gallery mode optical microresonators," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    18. Kavitha Rani Balmuri & Srinivas Konda & Wen-Cheng Lai & Parameshachari Bidare Divakarachari & Kavitha Malali Vishveshwarappa Gowda & Hemalatha Kivudujogappa Lingappa, 2022. "A Long Short-Term Memory Network-Based Radio Resource Management for 5G Network," Future Internet, MDPI, vol. 14(6), pages 1-20, June.
    19. Chen, Liang-Yuan & Wu, Hong-Yu & Jiang, Li-Hong, 2024. "Ring-like two-breather structures of a partially nonlocal NLS system with different two-directional diffractions under a parabolic potential," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    20. Fiki Taufik Akbar & Bobby Eka Gunara & Hadi Susanto, 2020. "Justification of the Lugiato-Lefever Model from a Damped Driven ? 4 Equation," Mathematics, MDPI, vol. 8(5), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.