Data-driven prediction of spatial optical solitons in fractional diffraction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2023.114085
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wu, Gang-Zhou & Fang, Yin & Wang, Yue-Yue & Wu, Guo-Cheng & Dai, Chao-Qing, 2021. "Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modified PINN," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Pu, Jun-Cai & Chen, Yong, 2022. "Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
- Fang, Yin & Wu, Gang-Zhou & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Fang, Yin & Bo, Wen-Bo & Wang, Ru-Ru & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Predicting nonlinear dynamics of optical solitons in optical fiber via the SCPINN," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Hong-Yu & Jiang, Li-Hong, 2024. "3D partially nonlocal ring-like Kuznetsov-Ma and Akhmediev breathers of NLS model with different diffractions under a linear potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Yu-Hang & Lü, Xing, 2024. "Multi-parallelized PINNs for the inverse problem study of NLS typed equations in optical fiber communications: Discovery on diverse high-order terms and variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
- Wu, Gang-Zhou & Fang, Yin & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Prediction of optical solitons using an improved physics-informed neural network method with the conservation law constraint," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Fang, Yin & Bo, Wen-Bo & Wang, Ru-Ru & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Predicting nonlinear dynamics of optical solitons in optical fiber via the SCPINN," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
- Jaganathan, Meiyazhagan & Bakthavatchalam, Tamil Arasan & Vadivel, Murugesan & Murugan, Selvakumar & Balu, Gopinath & Sankarasubbu, Malaikannan & Ramaswamy, Radha & Sethuraman, Vijayalakshmi & Malomed, 2023. "Data-driven multi-valley dark solitons of multi-component Manakov Model using Physics-Informed Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Chen, Junchao & Song, Jin & Zhou, Zijian & Yan, Zhenya, 2023. "Data-driven localized waves and parameter discovery in the massive Thirring model via extended physics-informed neural networks with interface zones," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
- Zhu, Bo-Wei & Fang, Yin & Liu, Wei & Dai, Chao-Qing, 2022. "Predicting the dynamic process and model parameters of vector optical solitons under coupled higher-order effects via WL-tsPINN," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Nikolay A. Kudryashov, 2023. "Hamiltonians of the Generalized Nonlinear Schrödinger Equations," Mathematics, MDPI, vol. 11(10), pages 1-12, May.
- Zhong, Ming & Yan, Zhenya, 2022. "Data-driven soliton mappings for integrable fractional nonlinear wave equations via deep learning with Fourier neural operator," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
- Pu, Jun-Cai & Chen, Yong, 2022. "Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
- Zhang, Yabin & Wang, Lei & Zhang, Peng & Luo, Haotian & Shi, Wanlin & Wang, Xin, 2022. "The nonlinear wave solutions and parameters discovery of the Lakshmanan-Porsezian-Daniel based on deep learning," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Chen, Liang-Yuan & Wu, Hong-Yu & Jiang, Li-Hong, 2024. "Partially nonlocal ring-like spatiotemporal superimposed second-order breathers under a harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
- Zhong, WenYe & Qin, Pei & Zhong, Wei-Ping & Belić, Milivoj, 2022. "Two-dimensional rogue wave clusters in self-focusing Kerr-media," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
- Cai, Yue-Jin & Wu, Jian-Wen & Lin, Ji, 2022. "Nondegenerate N-soliton solutions for Manakov system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Jiang, Jun-Hang & Si, Zhi-Zeng & Dai, Chao-Qing & Wu, Bin, 2024. "Prediction of multipole vector solitons and model parameters for coupled saturable nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Xu, Yun-Jie, 2023. "Vector ring-like combined Akhmediev breathers for partially nonlocal nonlinearity under external potentials," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Chen, Yi-Xiang, 2024. "(3+1)-dimensional partially nonlocal ring-like bright-dark monster waves," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Cao, Qi-Hao & Geng, Kai-Li & Zhu, Bo-Wei & Wang, Yue-Yue & Li, Ji-tao & Dai, Chao-Qing, 2023. "Annular rogue waves in whispering gallery mode optical resonators," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
- Zhu, Yu & Yang, Jing & Chen, Zezhou & Qin, Wei & Li, Jitao, 2024. "Ring-like partially nonlocal extreme wave of a (3+1)-dimensional NLS system with partially nonlocal nonlinearity and external potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Chen, Liang-Yuan & Wu, Hong-Yu & Jiang, Li-Hong, 2024. "Ring-like two-breather structures of a partially nonlocal NLS system with different two-directional diffractions under a parabolic potential," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
- Fang, Yin & Wu, Gang-Zhou & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
More about this item
Keywords
Spatial optical solitons; Soliton dynamics; Quasi-residual physics-informed neural network; Nonlinear fractional Schrödinger equation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009864. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.