IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924011093.html
   My bibliography  Save this article

Optical frequency combs and chaos in a hybrid atom–cavity optomagnonical system via the synergy of double-probe fields

Author

Listed:
  • Liu, Yilou
  • Zhao, Rui-Shan
  • Zhang, Kai-Kai
  • Jia, Ziyu
  • Wan, Ren-Gang
  • Sun, Hui
  • Yang, Wen-Xing
  • Xie, Xiao-Tao

Abstract

We theoretically investigate the modulation of optical frequency combs and chaos by the synergy of double-probe fields in the hybrid atom–cavity optomagnonical system consisting of a yttrium iron garnet sphere, a two-level atom, and a tapered fiber. Our results show that in the case of a single-probe field, the atom-optical mode coupling strength and amplitude strength of the probe field can effectively modify the tooth spacing (from one to one-half tooth spacing) of the optical frequency combs, as well as the entry or withdrawal of chaos. In a chaotic region, the relative phases between the control and probe fields can also be adjusted to withdraw chaotic motion. Moreover, we demonstrate the generation of hybridized fraction-order frequency combs via the synergy of double-probe fields, which is caused by the sum and difference frequency effects of sidebands. Interestingly, it is found that through the synergy of the double-probe fields, the system can enter a chaotic state under lower applied field intensity, which is modulated by the amplitude strengths and relative phases of the dual probe fields. In addition to providing insight into the characteristics of optical frequency combs and chaos in the hybrid atom–cavity optomagnonical system, our research may offer a new perspective for the development of precision measurements and secret information processing.

Suggested Citation

  • Liu, Yilou & Zhao, Rui-Shan & Zhang, Kai-Kai & Jia, Ziyu & Wan, Ren-Gang & Sun, Hui & Yang, Wen-Xing & Xie, Xiao-Tao, 2024. "Optical frequency combs and chaos in a hybrid atom–cavity optomagnonical system via the synergy of double-probe fields," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011093
    DOI: 10.1016/j.chaos.2024.115557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. W. Rao & S. Kaur & B. M. Yao & E. R. J. Edwards & Y. T. Zhao & Xiaolong Fan & Desheng Xue & T. J. Silva & Y. S. Gui & C.-M. Hu, 2019. "Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. P. Del’Haye & A. Schliesser & O. Arcizet & T. Wilken & R. Holzwarth & T. J. Kippenberg, 2007. "Optical frequency comb generation from a monolithic microresonator," Nature, Nature, vol. 450(7173), pages 1214-1217, December.
    3. Th. Udem & R. Holzwarth & T. W. Hänsch, 2002. "Optical frequency metrology," Nature, Nature, vol. 416(6877), pages 233-237, March.
    4. Wang, Xin & Huang, Kai-Wei & Qiu, Qing-Yang & Xiong, Hao, 2023. "Nonreciprocal double-carrier frequency combs in cavity magnonics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Apostolos Argyris & Dimitris Syvridis & Laurent Larger & Valerio Annovazzi-Lodi & Pere Colet & Ingo Fischer & Jordi García-Ojalvo & Claudio R. Mirasso & Luis Pesquera & K. Alan Shore, 2005. "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature, Nature, vol. 438(7066), pages 343-346, November.
    6. Pablo Marin-Palomo & Juned N. Kemal & Maxim Karpov & Arne Kordts & Joerg Pfeifle & Martin H. P. Pfeiffer & Philipp Trocha & Stefan Wolf & Victor Brasch & Miles H. Anderson & Ralf Rosenberger & Kovendh, 2017. "Microresonator-based solitons for massively parallel coherent optical communications," Nature, Nature, vol. 546(7657), pages 274-279, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Wang, Xin & Huang, Kai-Wei & Qiu, Qing-Yang & Xiong, Hao, 2023. "Nonreciprocal double-carrier frequency combs in cavity magnonics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Cao, Qi-Hao & Geng, Kai-Li & Zhu, Bo-Wei & Wang, Yue-Yue & Dai, Chao-Qing, 2023. "Scalar vortex solitons and vector dipole solitons in whispering gallery mode optical microresonators," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Yu, Zhengxin & Ren, Longfei & Li, Lang & Dai, Chaoqing & Wang, Yueyue, 2024. "Data-driven prediction of vortex solitons and multipole solitons in whispering gallery mode microresonator," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    5. Belmar-Monterrubio, Ramiro & Quiroz-Ibarra, J. Emilio & Cervantes-Sodi, Felipe, 2023. "A versatile mathematical function for generating stable and chaotic systems: A data encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Ronit Sohanpal & Haonan Ren & Li Shen & Callum Deakin & Alexander M. Heidt & Thomas W. Hawkins & John Ballato & Ursula J. Gibson & Anna C. Peacock & Zhixin Liu, 2022. "All-fibre heterogeneously-integrated frequency comb generation using silicon core fibre," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Mingming Nie & Kunpeng Jia & Yijun Xie & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2022. "Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Wang, Yan & Cheng, Wei & Feng, Junbo & Zang, Shengyin & Cheng, Hao & Peng, Zheng & Ren, Xiaodong & Shuai, Yubei & Liu, Hao & Pu, Xun & Yang, Junbo & Wu, Jiagui, 2022. "Silicon photonic secure communication using artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    10. Seyed Danial Hashemi & Sunil Mittal, 2024. "Floquet topological dissipative Kerr solitons and incommensurate frequency combs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Ze-Xian Zhang & Min Luo & Jia-Hao Liu & Yi-Tao Yang & Ti-Jian Li & Meng Liu & Ai-Ping Luo & Wen-Cheng Xu & Zhi-Chao Luo, 2024. "Coherence-controlled chaotic soliton bunch," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Yu, Nanxiang & Zhu, Wei, 2021. "Event-triggered impulsive chaotic synchronization of fractional-order differential systems," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    13. Aiguo Wu & Shijian Cang & Ruiye Zhang & Zenghui Wang & Zengqiang Chen, 2018. "Hyperchaos in a Conservative System with Nonhyperbolic Fixed Points," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    14. Carroll, Thomas L., 2017. "Communication with unstable basis functions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 766-771.
    15. Amirhossein Nazerian & Joseph D. Hart & Matteo Lodi & Francesco Sorrentino, 2024. "The efficiency of synchronization dynamics and the role of network syncreactivity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Rui Niu & Ming Li & Shuai Wan & Yu Robert Sun & Shui-Ming Hu & Chang-Ling Zou & Guang-Can Guo & Chun-Hua Dong, 2023. "kHz-precision wavemeter based on reconfigurable microsoliton," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    17. Chao Xiang & Joel Guo & Warren Jin & Lue Wu & Jonathan Peters & Weiqiang Xie & Lin Chang & Boqiang Shen & Heming Wang & Qi-Fan Yang & David Kinghorn & Mario Paniccia & Kerry J. Vahala & Paul A. Morton, 2021. "High-performance lasers for fully integrated silicon nitride photonics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    18. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Arkadev Roy & Luis Ledezma & Luis Costa & Robert Gray & Ryoto Sekine & Qiushi Guo & Mingchen Liu & Ryan M. Briggs & Alireza Marandi, 2023. "Visible-to-mid-IR tunable frequency comb in nanophotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Yong Geng & Heng Zhou & Xinjie Han & Wenwen Cui & Qiang Zhang & Boyuan Liu & Guangwei Deng & Qiang Zhou & Kun Qiu, 2022. "Coherent optical communications using coherence-cloned Kerr soliton microcombs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.