IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i3p296-d216447.html
   My bibliography  Save this article

The Multivariate Theory of Connections

Author

Listed:
  • Daniele Mortari

    (Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA)

  • Carl Leake

    (Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA)

Abstract

This paper extends the univariate Theory of Connections, introduced in (Mortari, 2017), to the multivariate case on rectangular domains with detailed attention to the bivariate case. In particular, it generalizes the bivariate Coons surface, introduced by (Coons, 1984), by providing analytical expressions, called constrained expressions , representing all possible surfaces with assigned boundary constraints in terms of functions and arbitrary-order derivatives. In two dimensions, these expressions, which contain a freely chosen function, g ( x , y ) , satisfy all constraints no matter what the g ( x , y ) is. The boundary constraints considered in this article are Dirichlet, Neumann, and any combinations of them. Although the focus of this article is on two-dimensional spaces, the final section introduces the Multivariate Theory of Connections , validated by mathematical proof. This represents the multivariate extension of the Theory of Connections subject to arbitrary-order derivative constraints in rectangular domains. The main task of this paper is to provide an analytical procedure to obtain constrained expressions in any space that can be used to transform constrained problems into unconstrained problems. This theory is proposed mainly to better solve PDE and stochastic differential equations.

Suggested Citation

  • Daniele Mortari & Carl Leake, 2019. "The Multivariate Theory of Connections," Mathematics, MDPI, vol. 7(3), pages 1-22, March.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:3:p:296-:d:216447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/3/296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/3/296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniele Mortari, 2017. "The Theory of Connections: Connecting Points," Mathematics, MDPI, vol. 5(4), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristofer Drozd & Roberto Furfaro & Enrico Schiassi & Andrea D’Ambrosio, 2023. "Physics-Informed Neural Networks and Functional Interpolation for Solving the Matrix Differential Riccati Equation," Mathematics, MDPI, vol. 11(17), pages 1-24, August.
    2. Daniele Mortari, 2022. "Theory of Functional Connections Subject to Shear-Type and Mixed Derivatives," Mathematics, MDPI, vol. 10(24), pages 1-16, December.
    3. Kristofer Drozd & Roberto Furfaro & Andrea D’Ambrosio, 2024. "A Theory of Functional Connections-Based hp -Adaptive Mesh Refinement Algorithm for Solving Hypersensitive Two-Point Boundary-Value Problems," Mathematics, MDPI, vol. 12(9), pages 1-35, April.
    4. Yassopoulos, Christopher & Reddy, J.N. & Mortari, Daniele, 2023. "Analysis of nonlinear Timoshenko–Ehrenfest beam problems with von Kármán nonlinearity using the Theory of Functional Connections," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 709-744.
    5. Daniele Mortari & Roberto Garrappa & Luigi Nicolò, 2023. "Theory of Functional Connections Extended to Fractional Operators," Mathematics, MDPI, vol. 11(7), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:3:p:296-:d:216447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.