IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010671.html
   My bibliography  Save this article

Pure-quartic soliton self-frequency shift in a mode-locked fiber laser

Author

Listed:
  • Yang, Song
  • Zhu, Zhiwei
  • He, Chaojian
  • Qi, Yaoyao
  • Lin, Xuechun

Abstract

The pure-quartic soliton (PQS) offers the advantage of a wide spectrum and approximately Gaussian temporal profile, which has the potential to obtain high-energy ultrafast laser pulses. Thus, exploring the role of stimulated Raman scattering in the formation and propagation of PQSs in fiber lasers is crucial, especially considering the greater propensity for highpower and short PQS pulses compared to traditional solitons. Here, we present the modeling of a self-frequency shift (SFS) fiber laser based on the PQS, emphasizing the impact of fourth-order dispersion and the Raman effect. The significant red-shift in wavelength is discovered as the pump energy increases, revealing that the emergence of SFS is a universal attractor in mode-locked PQS fiber laser systems. Our simulations demonstrate that such wavelength tunability is a direct byproduct of the gain bandwidth limit and the stimulated Raman scattering for PQSs inside the fiber cavity, while the evolution dynamics in the gain and passive fiber show obvious differences. However, we find that the effect of SFS in a PQS fiber laser is compromised by a trade-off with the degradation of pulse quality, such as reshaping the oscillating tail and destroying the symmetry of the emission pulse. This Raman-induced nonlinear process under high pump energy facilitates the discovery of the comprehensive complexity of science for PQSs suffering from higher-dimensional forms of nonlinear effects in fiber lasers.

Suggested Citation

  • Yang, Song & Zhu, Zhiwei & He, Chaojian & Qi, Yaoyao & Lin, Xuechun, 2024. "Pure-quartic soliton self-frequency shift in a mode-locked fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010671
    DOI: 10.1016/j.chaos.2024.115515
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.