IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v157y2022ics0960077922001606.html
   My bibliography  Save this article

Dark gap solitons in one-dimensional nonlinear periodic media with fourth-order dispersion

Author

Listed:
  • Li, Jiawei
  • Zhang, Yanpeng
  • Zeng, Jianhua

Abstract

The studies of solitons are usually confined to the models with normal two-order dispersion or diffraction; while recent theoretical predictions and experimental observations have confirmed the important role that the fourth-order dispersion played in, leading to the discovery of a new class of solitons—quartic solitons in fibers. We here theoretically consider the one-dimensional (1D) periodic nonlinear media with both second-order and fourth-order dispersions, and uncover numerically the existence, properties, and stabilities of dark gap solitons populated within the associated linear photonic band gaps. Such gaps, particularly, are affected drastically by normal or anomalous fourth-order dispersion; the dark gap solitons are always found to be unstable for the latter, and are robustly stable and have a wide stability region for the former case, verified by linear-stability analysis and direct perturbed simulations. The obtained results provide insights into physics of dark gap solitons in higher-order dispersion regime.

Suggested Citation

  • Li, Jiawei & Zhang, Yanpeng & Zeng, Jianhua, 2022. "Dark gap solitons in one-dimensional nonlinear periodic media with fourth-order dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001606
    DOI: 10.1016/j.chaos.2022.111950
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922001606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng Wang & Yuanlin Zheng & Xianfeng Chen & Changming Huang & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2020. "Localization and delocalization of light in photonic moiré lattices," Nature, Nature, vol. 577(7788), pages 42-46, January.
    2. Chen, Junbo & Zeng, Jianhua, 2021. "Dark matter-wave gap solitons of Bose-Einstein condensates trapped in optical lattices with competing cubic-quintic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. D. Tanese & H. Flayac & D. Solnyshkov & A. Amo & A. Lemaître & E. Galopin & R. Braive & P. Senellart & I. Sagnes & G. Malpuech & J. Bloch, 2013. "Polariton condensation in solitonic gap states in a one-dimensional periodic potential," Nature Communications, Nature, vol. 4(1), pages 1-9, June.
    4. D. Tanese & H. Flayac & D. Solnyshkov & A. Amo & A. Lematre & E. Galopin & R. Braive & P. Senellart & I. Sagnes & G. Malpuech & J. Bloch, 2013. "Correction: Corrigendum: Polariton condensation in solitonic gap states in a one-dimensional periodic potential," Nature Communications, Nature, vol. 4(1), pages 1-1, October.
    5. Andrea Blanco-Redondo & C. Martijn de Sterke & J.E. Sipe & Thomas F. Krauss & Benjamin J. Eggleton & Chad Husko, 2016. "Pure-quartic solitons," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    6. Alois Regensburger & Christoph Bersch & Mohammad-Ali Miri & Georgy Onishchukov & Demetrios N. Christodoulides & Ulf Peschel, 2012. "Parity–time synthetic photonic lattices," Nature, Nature, vol. 488(7410), pages 167-171, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qing & Zhou, Liangliang & Zhu, Junying & He, Jun-Rong, 2024. "Multi-vortex beams in nonlinear media with harmonic potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Chen, Junbo & Zeng, Jianhua, 2021. "Dark matter-wave gap solitons of Bose-Einstein condensates trapped in optical lattices with competing cubic-quintic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Jie Qian & C. H. Meng & J. W. Rao & Z. J. Rao & Zhenghua An & Yongsheng Gui & C. -M. Hu, 2023. "Non-Hermitian control between absorption and transparency in perfect zero-reflection magnonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Bai, Xiaoqin & Bai, Juan & Malomed, Boris A. & Yang, Rongcao, 2024. "Spectrum conversion and pattern preservation of Airy beams in fractional systems with a dynamical harmonic-oscillator potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Zhaohui Dong & Xiaoxiong Wu & Yiwen Yang & Penghong Yu & Xianfeng Chen & Luqi Yuan, 2024. "Temporal multilayer structures in discrete physical systems towards arbitrary-dimensional non-Abelian Aharonov-Bohm interferences," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Wu, Zhenkun & Yang, Kaibo & Zhang, Yagang & Ren, Xijun & Wen, Feng & Gu, Yuzong & Guo, Lijun, 2022. "Nonlinear conical diffraction in fractional dimensions with a PT-symmetric optical lattice," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    8. Chenwei Lv & Ren Zhang & Zhengzheng Zhai & Qi Zhou, 2022. "Curving the space by non-Hermiticity," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. Cao, Xuefei & Wang, Kaile & Yang, Song & Gao, Yuanmei & Cai, Yangjian & Wen, Zengrun, 2024. "Localization and delocalization of light in synthetic photonic lattices with hybrid Bloch-Anderson modulations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    10. Chen, Zhiming & Liu, Xiuye & Xie, Hongqiang & Zeng, Jianhua, 2024. "Three-dimensional Bose–Einstein gap solitons in optical lattices with fractional diffraction," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    11. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Liu, Dongshuai & Gao, Yanxia & Fan, Dianyuan & Zhang, Lifu, 2023. "Higher-charged vortex solitons in harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    13. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Guoqiang Xu & Xue Zhou & Shuihua Yang & Jing Wu & Cheng-Wei Qiu, 2023. "Observation of bulk quadrupole in topological heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Zhu, Zhiwei & Yang, Song & He, Chaojian & Lin, Xuechun, 2023. "Vector pure-quartic soliton molecule fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    17. Danial Saadatmand & Aliakbar Moradi Marjaneh, 2022. "Scattering of the asymmetric $$\phi ^6$$ ϕ 6 kinks from a $${\mathcal{PT}\mathcal{}}$$ PT -symmetric perturbation: creating multiple kink–antikink pairs from phonons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-13, September.
    18. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Chengzhi Qin & Han Ye & Shulin Wang & Lange Zhao & Menglin Liu & Yinglan Li & Xinyuan Hu & Chenyu Liu & Bing Wang & Stefano Longhi & Peixiang Lu, 2024. "Observation of discrete-light temporal refraction by moving potentials with broken Galilean invariance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Ze-Xian Zhang & Min Luo & Jia-Hao Liu & Yi-Tao Yang & Ti-Jian Li & Meng Liu & Ai-Ping Luo & Wen-Cheng Xu & Zhi-Chao Luo, 2024. "Coherence-controlled chaotic soliton bunch," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.