IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50236-w.html
   My bibliography  Save this article

Coherence-controlled chaotic soliton bunch

Author

Listed:
  • Ze-Xian Zhang

    (South China Normal University
    South China Normal University)

  • Min Luo

    (South China Normal University
    South China Normal University)

  • Jia-Hao Liu

    (South China Normal University
    South China Normal University)

  • Yi-Tao Yang

    (South China Normal University
    South China Normal University)

  • Ti-Jian Li

    (South China Normal University
    South China Normal University)

  • Meng Liu

    (South China Normal University
    South China Normal University)

  • Ai-Ping Luo

    (South China Normal University
    South China Normal University)

  • Wen-Cheng Xu

    (South China Normal University
    South China Normal University)

  • Zhi-Chao Luo

    (South China Normal University
    South China Normal University)

Abstract

Controlling the coherence of chaotic soliton bunch holds the promise to explore novel light-matter interactions and manipulate dynamic events such as rogue waves. However, the coherence control of chaotic soliton bunch remains challenging, as there is a lack of dynamic equilibrium mechanism for stochastic soliton interactions. Here, we develop a strategy to effectively control the coherence of chaotic soliton bunch in a laser. We show that by introducing a lumped fourth-order-dispersion (FOD), the soliton oscillating tails can be formed and generate the potential barriers among the chaotic solitons. The repulsive force between neighboring solitons enabled by the potential barriers gives rise to an alleviation of the soliton fusion/annihilation from stochastic interactions, endowing the capability to control the coherence in chaotic soliton bunch. We envision that this result provides a promising test-bed for a variety of dynamical complexity science and brings new insights into the nonlinear behavior of chaotic laser sources.

Suggested Citation

  • Ze-Xian Zhang & Min Luo & Jia-Hao Liu & Yi-Tao Yang & Ti-Jian Li & Meng Liu & Ai-Ping Luo & Wen-Cheng Xu & Zhi-Chao Luo, 2024. "Coherence-controlled chaotic soliton bunch," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50236-w
    DOI: 10.1038/s41467-024-50236-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50236-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50236-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    2. Fanchao Meng & Coraline Lapre & Cyril Billet & Thibaut Sylvestre & Jean-Marc Merolla & Christophe Finot & Sergei K. Turitsyn & Goëry Genty & John M. Dudley, 2021. "Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Apostolos Argyris & Dimitris Syvridis & Laurent Larger & Valerio Annovazzi-Lodi & Pere Colet & Ingo Fischer & Jordi García-Ojalvo & Claudio R. Mirasso & Luis Pesquera & K. Alan Shore, 2005. "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature, Nature, vol. 438(7066), pages 343-346, November.
    4. Andrea Blanco-Redondo & C. Martijn de Sterke & J.E. Sipe & Thomas F. Krauss & Benjamin J. Eggleton & Chad Husko, 2016. "Pure-quartic solitons," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vieira, Robson & Martins, Weliton S. & Barreiro, Sergio & Oliveira, Rafael A. de & Chevrollier, Martine & Oriá, Marcos, 2021. "Synchronization of a nonlinear oscillator with a sum signal from equivalent oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    2. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    3. Faedo, Nicolás & García-Violini, Demián & Ringwood, John V., 2021. "Controlling synchronization in a complex network of nonlinear oscillators via feedback linearisation and H∞-control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    5. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    6. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    7. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    8. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    9. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    10. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    11. De Montis, Andrea & Ganciu, Amedeo & Cabras, Matteo & Bardi, Antonietta & Mulas, Maurizio, 2019. "Comparative ecological network analysis: An application to Italy," Land Use Policy, Elsevier, vol. 81(C), pages 714-724.
    12. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    13. T. Botmart & N. Yotha & P. Niamsup & W. Weera, 2017. "Hybrid Adaptive Pinning Control for Function Projective Synchronization of Delayed Neural Networks with Mixed Uncertain Couplings," Complexity, Hindawi, vol. 2017, pages 1-18, August.
    14. Sgrignoli, P. & Agliari, E. & Burioni, R. & Schianchi, A., 2015. "Instability and network effects in innovative markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 260-271.
    15. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    16. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    17. Liang’an Huo & Fan Ding & Chen Liu & Yingying Cheng, 2018. "Dynamical Analysis of Rumor Spreading Model considering Node Activity in Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-10, November.
    18. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    19. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    20. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50236-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.