IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924004557.html
   My bibliography  Save this article

Pure-quartic soliton in a birefringence-managed fiber laser

Author

Listed:
  • Tang, Ziya
  • Tu, Lisha
  • Jiang, Yu
  • Wang, Jiachen
  • Wang, Jinzhang
  • Yan, Peiguang
  • Liu, Xing
  • Ruan, Shuangchen
  • Guo, Chunyu

Abstract

Pure-quartic soliton (PQS) fiber lasers with a great variety of operating regimes have aroused considerable interest in high-energy ultrashort pulses and novel soliton patterns. Here, we numerically investigate the generation and dynamic properties of birefringence-managed pure-quartic soliton (BMPQS) in a positive fourth-order dispersion (FOD) fiber laser consisting of single-mode fibers and a section of polarization-maintaining fiber. The formation mechanism of the chirp-free BMPQS is dominated by the phase-matching effect, which arises from the co-actions of the birefringence, positive FOD, and nonlinear effects. It is observed that a higher FOD coefficient leads to energy transfer between the spectral sidebands inside the BMPQS. Moreover, the evolution of the BMPQS with the increase of the pump power confirms the phase-matching theory. Finally, the BMPQS molecule can be obtained with further increasing the pump power. This work offers a new avenue to create chirp-free pulses in positive FOD fiber lasers and enriches the sub-families of PQSs.

Suggested Citation

  • Tang, Ziya & Tu, Lisha & Jiang, Yu & Wang, Jiachen & Wang, Jinzhang & Yan, Peiguang & Liu, Xing & Ruan, Shuangchen & Guo, Chunyu, 2024. "Pure-quartic soliton in a birefringence-managed fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004557
    DOI: 10.1016/j.chaos.2024.114903
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Zhiwei & Yang, Song & He, Chaojian & Lin, Xuechun, 2023. "Vector pure-quartic soliton molecule fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Yang, Song & Zhu, Zhiwei & Qi, Yaoyao & Jin, Lei & Li, Li & Lin, Xuechun, 2023. "Internal motion within pulsating pure-quartic soliton molecules in a fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Ursula Keller, 2003. "Recent developments in compact ultrafast lasers," Nature, Nature, vol. 424(6950), pages 831-838, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Song & Zhu, Zhiwei & He, Chaojian & Shi, Yiwen & Yang, Yingying & Lin, Xuechun, 2024. "Collapse of pure-quartic solitons in a mode-locked fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Zhang, Xunbo & Zou, Defeng & Liu, Runmin & Lv, Jinqian & Hu, Minglie & Shum, Perry Ping & Song, Youjian, 2024. "From breather solitons to chaos in an ultrafast laser: The scenario of cascading short and long-period pulsations," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Wang, Gang & Qin, Haoye & Liu, Jiayao & Ouyang, Hao & Wang, Xiaogang & Fu, Bo, 2023. "Spatiotemporal dissipative soliton resonances in multimode fiber lasers," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Sohail, Muhammad & Zhu, Guojun & Wang, Zhenhong & Khan, Sayed Ali & Zhang, Bin & Fan, Dianyuan, 2024. "Broadband ultrafast fiber lasers enabled by the defect regulation in Ti4-TiN saturable absorbers," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    5. Dong Mao & Huaqiang Wang & Heze Zhang & Chao Zeng & Yueqing Du & Zhiwen He & Zhipei Sun & Jianlin Zhao, 2021. "Synchronized multi-wavelength soliton fiber laser via intracavity group delay modulation," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Yan, Dan & Li, Xingliang & Han, Mengmeng & Zhang, Shumin, 2024. "Partially “invisible” pulsation of asymmetric soliton molecules," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    7. Junting Liu & Fang Yang & Junpeng Lu & Shuai Ye & Haowen Guo & Hongkun Nie & Jialin Zhang & Jingliang He & Baitao Zhang & Zhenhua Ni, 2022. "High output mode-locked laser empowered by defect regulation in 2D Bi2O2Se saturable absorber," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Nagi, Jaspreet Kaur & Jana, Soumendu, 2022. "Broadband cavity soliton with graphene saturable absorber," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    9. Zhu, Zhiwei & Yang, Song & He, Chaojian & Lin, Xuechun, 2023. "Vector pure-quartic soliton molecule fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Malomed, B.A., 2022. "Multidimensional dissipative solitons and solitary vortices," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    11. Jean Pierre Weid & Marlon M. Correia & Pedro Tovar & Anderson S. L. Gomes & Walter Margulis, 2024. "A mode-locked random laser generating transform-limited optical pulses," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Changjian Lv & Fanchao Meng & Linghao Cui & Yadong Jiao & Zhixu Jia & Weiping Qin & Guanshi Qin, 2024. "Voltage-controlled nonlinear optical properties in gold nanofilms via electrothermal effect," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Bacha, Bakht Amin & Ahmad, Saeed & Ahmad, Rashid & Ahmad, Iftikhar, 2024. "Coherent manipulation of vectorial soliton beam in sodium like atomic medium," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.