IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924004958.html
   My bibliography  Save this article

Partially “invisible” pulsation of asymmetric soliton molecules

Author

Listed:
  • Yan, Dan
  • Li, Xingliang
  • Han, Mengmeng
  • Zhang, Shumin

Abstract

Pulsation is a universal phenomenon in all disciplines of nonlinear science, which generally exhibit various nonlinear soliton dynamic modes in nonlinear optics. With the emergence of real-time spectral measurement technology, a new phenomenon of optical soliton pulsation, “invisible” soliton pulsation, has gradually attracted researchers’ attention. In this paper, by solving the coupled Ginzburg–Landau equation, we have discovered the partially “invisible” pulsation phenomenon of asymmetric soliton molecules (SMs) composed of two unequal-intensity pulses in a normal-dispersion Mamyshev oscillator for the first time. It is indicated that the fluctuation periods of each internal pulse in asymmetric SMs in terms of peak power, energy, and relative phase difference are all four roundtrips. However, the oscillation period of asymmetric SMs energy is two roundtrips, only half of the above period. Further research shows that the oscillation of the relative phase difference between two internal pulses in SMs is related to the variation of their intensity difference, which can also affect the position change of the spectral modulation peak. This work will enrich the research on “invisible” soliton pulsation and is of great significance for promoting the development of nonlinear dissipative systems.

Suggested Citation

  • Yan, Dan & Li, Xingliang & Han, Mengmeng & Zhang, Shumin, 2024. "Partially “invisible” pulsation of asymmetric soliton molecules," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004958
    DOI: 10.1016/j.chaos.2024.114943
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ru-Ru & Bo, Wen-Bo & Han, Hao-Bin & Dai, Chao-Qing & Wang, Yue-Yue, 2023. "Vector pulsating solitons and soliton molecules under higher-order effects in passively mode-locked fiber lasers," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Z. Q. Wang & K. Nithyanandan & A. Coillet & P. Tchofo-Dinda & Ph. Grelu, 2019. "Optical soliton molecular complexes in a passively mode-locked fibre laser," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Yang, Song & Zhu, Zhiwei & Qi, Yaoyao & Jin, Lei & Li, Li & Lin, Xuechun, 2023. "Internal motion within pulsating pure-quartic soliton molecules in a fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Dong Mao & Huaqiang Wang & Heze Zhang & Chao Zeng & Yueqing Du & Zhiwen He & Zhipei Sun & Jianlin Zhao, 2021. "Synchronized multi-wavelength soliton fiber laser via intracavity group delay modulation," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xunbo & Zou, Defeng & Liu, Runmin & Lv, Jinqian & Hu, Minglie & Shum, Perry Ping & Song, Youjian, 2024. "From breather solitons to chaos in an ultrafast laser: The scenario of cascading short and long-period pulsations," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Zhu, Zhiwei & Yang, Song & He, Chaojian & Lin, Xuechun, 2023. "Vector pure-quartic soliton molecule fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Yang, Song & Zhu, Zhiwei & He, Chaojian & Shi, Yiwen & Yang, Yingying & Lin, Xuechun, 2024. "Collapse of pure-quartic solitons in a mode-locked fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    4. Dai, Jiaxin & Zeng, Jiali & Hu, Wei & Lu, Daquan, 2022. "The bound states of pure-quartic solitons," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    5. Tang, Ziya & Tu, Lisha & Jiang, Yu & Wang, Jiachen & Wang, Jinzhang & Yan, Peiguang & Liu, Xing & Ruan, Shuangchen & Guo, Chunyu, 2024. "Pure-quartic soliton in a birefringence-managed fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    6. Dong Mao & Huaqiang Wang & Heze Zhang & Chao Zeng & Yueqing Du & Zhiwen He & Zhipei Sun & Jianlin Zhao, 2021. "Synchronized multi-wavelength soliton fiber laser via intracavity group delay modulation," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Yang, Song & Zhu, Zhiwei & Qi, Yaoyao & Jin, Lei & Li, Li & Lin, Xuechun, 2023. "Internal motion within pulsating pure-quartic soliton molecules in a fiber laser," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Yuankai Guo & Wei Lin & Wenlong Wang & Runsen Zhang & Tao Liu & Yiqing Xu & Xiaoming Wei & Zhongmin Yang, 2023. "Unveiling the complexity of spatiotemporal soliton molecules in real time," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Łukasz A. Sterczewski & Jarosław Sotor, 2023. "Two-photon imaging of soliton dynamics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.