IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v560y2020ics037843712030594x.html
   My bibliography  Save this article

Modeling and analysis of a H1N1 model with relapse and effect of Twitter

Author

Listed:
  • Huo, Hai-Feng
  • Jing, Shuang-Lin
  • Wang, Xun-Yang
  • Xiang, Hong

Abstract

Twitter can play an important role in the control of influenza epidemics. We introduce a quantitative approach to evaluate the effects of Twitter on the modeling of the spread of influenza epidemics in this paper. Statistically significant correlations between the number of the percentage of tweets that are self-reporting flu and data of influenza-like illness reported cases are found from Pearson correlation and cross-correlation analyses, during the 2009 H1N1 flu outbreak in England. A new H1N1 model with relapse which involves impact of Twitter are also proposed. Stability of all the equilibria of our model are obtained. The occurrence of backward and forward bifurcation are also established. The best-fit parameter values in our model are identified by gray wolf optimizer and nonlinear least square method from the above data. For determining key parameters during the outbreak of the disease with Twitter impact, the uncertainty and sensitivity analyses are explored by using a Latin hypercube sampling (LHS) method and evaluating the partial rank correlation coefficients (PRCCs). Our results show that Twitter reports have important implications for the control of infectious diseases and Twitter can serve as a good indicator of influenza epidemics.

Suggested Citation

  • Huo, Hai-Feng & Jing, Shuang-Lin & Wang, Xun-Yang & Xiang, Hong, 2020. "Modeling and analysis of a H1N1 model with relapse and effect of Twitter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
  • Handle: RePEc:eee:phsmap:v:560:y:2020:i:c:s037843712030594x
    DOI: 10.1016/j.physa.2020.125136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712030594X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Yongli & Jiao, Jianjun & Gui, Zhanji & Liu, Yuting & Wang, Weiming, 2018. "Environmental variability in a stochastic epidemic model," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 210-226.
    2. Tailei Zhang & Kai Wang & Xueliang Zhang, 2015. "Modeling and Analyzing the Transmission Dynamics of HBV Epidemic in Xinjiang, China," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-14, September.
    3. Wang, Weiming & Cai, Yongli & Ding, Zuqin & Gui, Zhanji, 2018. "A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 921-936.
    4. Huo, Hai-Feng & Yang, Peng & Xiang, Hong, 2018. "Stability and bifurcation for an SEIS epidemic model with the impact of media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 702-720.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    2. Liu, Qun & Jiang, Daqing, 2023. "Analysis of a stochastic inshore–offshore hairtail fishery model with Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.
    4. Lan, Guijie & Wei, Chunjin & Zhang, Shuwen, 2019. "Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 828-842.
    5. Liu, Qun & Jiang, Daqing, 2020. "Stationary distribution of a stochastic cholera model with imperfect vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    6. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    7. Bao, Kangbo & Zhang, Qimin & Rong, Libin & Li, Xining, 2019. "Dynamics of an imprecise SIRS model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 489-506.
    8. Tian, Baodan & Zhang, Yong & Li, Jiamei, 2020. "Stochastic perturbations for a duopoly Stackelberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Cai, Yongli & Ding, Zuqin & Yang, Bin & Peng, Zhihang & Wang, Weiming, 2019. "Transmission dynamics of Zika virus with spatial structure—A case study in Rio de Janeiro, Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 729-740.
    10. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Ran, Xue & Hu, Lin & Nie, Lin-Fei & Teng, Zhidong, 2021. "Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    12. Tuerxun, Nafeisha & Wen, Buyu & Teng, Zhidong, 2021. "The stationary distribution in a class of stochastic SIRS epidemic models with non-monotonic incidence and degenerate diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 888-912.
    13. Laaribi, Aziz & Boukanjime, Brahim & El Khalifi, Mohamed & Bouggar, Driss & El Fatini, Mohamed, 2023. "A generalized stochastic SIRS epidemic model incorporating mean-reverting Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    14. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Gao, Miaomiao & Jiang, Daqing & Ding, Jieyu, 2023. "Dynamical behavior of a nutrient–plankton model with Ornstein–Uhlenbeck process and nutrient recycling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    16. Gamboa, M. & López-García, M. & Lopez-Herrero, M.J., 2024. "On the exact and population bi-dimensional reproduction numbers in a stochastic SVIR model with imperfect vaccine," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    17. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    18. Buonomo, Bruno & Della Marca, Rossella, 2019. "Oscillations and hysteresis in an epidemic model with information-dependent imperfect vaccination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 97-114.
    19. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    20. Zhang, Baoxiang & Cai, Yongli & Wang, Bingxian & Wang, Weiming, 2019. "Pattern formation in a reaction–diffusion parasite–host model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 732-740.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:560:y:2020:i:c:s037843712030594x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.