IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v182y2021icp888-912.html
   My bibliography  Save this article

The stationary distribution in a class of stochastic SIRS epidemic models with non-monotonic incidence and degenerate diffusion

Author

Listed:
  • Tuerxun, Nafeisha
  • Wen, Buyu
  • Teng, Zhidong

Abstract

A class of stochastic SIRS epidemic models with non-monotonic incidence and degenerate diffusion is investigated. By using the Lyapunov function method, the existence of global positive solutions and the ultimate boundedness with probability one are obtained. By using the Markov semigroups theory, Fokker–Planck equation and Khasminskiǐ functions, the existence of unique stationary distribution for the model is established. That is, when the stochastic basic reproduction number R0S>1 and some extra conditions are satisfied then the distribution density of any positive solutions of the model converges to a unique invariant density as t→+∞. Finally, the main conclusions and open problems are illustrated and verified by the numerical simulations.

Suggested Citation

  • Tuerxun, Nafeisha & Wen, Buyu & Teng, Zhidong, 2021. "The stationary distribution in a class of stochastic SIRS epidemic models with non-monotonic incidence and degenerate diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 888-912.
  • Handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:888-912
    DOI: 10.1016/j.matcom.2020.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420300823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Buyu & Rifhat, Ramziya & Teng, Zhidong, 2019. "The stationary distribution in a stochastic SIS epidemic model with general nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 258-271.
    2. Guo, Wenjuan & Cai, Yongli & Zhang, Qimin & Wang, Weiming, 2018. "Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2220-2236.
    3. Lahrouz, Aadil & Omari, Lahcen, 2013. "Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 960-968.
    4. Cai, Yongli & Jiao, Jianjun & Gui, Zhanji & Liu, Yuting & Wang, Weiming, 2018. "Environmental variability in a stochastic epidemic model," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 210-226.
    5. Liu, Qun & Jiang, Daqing & He, Xiuli & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a stochastic predator–prey model with distributed delay and general functional response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 273-287.
    6. Lin, Yuguo & Wang, Libo & Dong, Xiaowan, 2019. "Long-time behavior of a regime-switching SIRS epidemic model with degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 529(C).
    7. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    8. Wang, Weiming & Cai, Yongli & Ding, Zuqin & Gui, Zhanji, 2018. "A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 921-936.
    9. Carletti, M. & Burrage, K. & Burrage, P.M., 2004. "Numerical simulation of stochastic ordinary differential equations in biomathematical modelling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 271-277.
    10. Rudnicki, Ryszard, 2003. "Long-time behaviour of a stochastic prey-predator model," Stochastic Processes and their Applications, Elsevier, vol. 108(1), pages 93-107, November.
    11. Lin, Yuguo & Jin, Manli, 2019. "Ergodicity of a regime-switching epidemic model with degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    12. Xiaoting Fan & Yi Song & Wencai Zhao, 2018. "Modeling Cell-to-Cell Spread of HIV-1 with Nonlocal Infections," Complexity, Hindawi, vol. 2018, pages 1-10, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.
    2. Fu, Xiaoming, 2019. "On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1008-1023.
    3. Lan, Guijie & Wei, Chunjin & Zhang, Shuwen, 2019. "Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 828-842.
    4. Liu, Qun & Jiang, Daqing & He, Xiuli & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a stochastic predator–prey model with distributed delay and general functional response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 273-287.
    5. Wang, Lei & Gao, Chunjie & Rifhat, Ramziya & Wang, Kai & Teng, Zhidong, 2024. "Stationary distribution and bifurcation analysis for a stochastic SIS model with nonlinear incidence and degenerate diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Wang, Lei & Wang, Kai & Jiang, Daqing & Hayat, Tasawar, 2018. "Nontrivial periodic solution for a stochastic brucellosis model with application to Xinjiang, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 522-537.
    7. Yang, Bo, 2018. "A stochastic Feline immunodeficiency virus model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 448-458.
    8. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    9. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Liu, Qun & Jiang, Daqing, 2020. "Stationary distribution of a stochastic cholera model with imperfect vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    11. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    12. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    13. Bao, Kangbo & Zhang, Qimin & Rong, Libin & Li, Xining, 2019. "Dynamics of an imprecise SIRS model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 489-506.
    14. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Threshold behavior in two types of stochastic three strains influenza virus models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    15. Cai, Yongli & Ding, Zuqin & Yang, Bin & Peng, Zhihang & Wang, Weiming, 2019. "Transmission dynamics of Zika virus with spatial structure—A case study in Rio de Janeiro, Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 729-740.
    16. Wang, Weiming & Cai, Yongli & Ding, Zuqin & Gui, Zhanji, 2018. "A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 921-936.
    17. Ran, Xue & Hu, Lin & Nie, Lin-Fei & Teng, Zhidong, 2021. "Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    18. Laaribi, Aziz & Boukanjime, Brahim & El Khalifi, Mohamed & Bouggar, Driss & El Fatini, Mohamed, 2023. "A generalized stochastic SIRS epidemic model incorporating mean-reverting Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    19. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Zhao, Yu & Zhang, Liping & Yuan, Sanling, 2018. "The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 248-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:888-912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.