IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v608y2022i7923d10.1038_s41586-022-04959-9.html
   My bibliography  Save this article

Emerging signals of declining forest resilience under climate change

Author

Listed:
  • Giovanni Forzieri

    (European Commission, Joint Research Centre
    University of Florence)

  • Vasilis Dakos

    (Université de Montpellier, CNRS, IRD, EPHE)

  • Nate G. McDowell

    (Pacific Northwest National Laboratory
    School of Biological Sciences, Washington State University)

  • Alkama Ramdane

    (European Commission, Joint Research Centre)

  • Alessandro Cescatti

    (European Commission, Joint Research Centre)

Abstract

Forest ecosystems depend on their capacity to withstand and recover from natural and anthropogenic perturbations (that is, their resilience)1. Experimental evidence of sudden increases in tree mortality is raising concerns about variation in forest resilience2, yet little is known about how it is evolving in response to climate change. Here we integrate satellite-based vegetation indices with machine learning to show how forest resilience, quantified in terms of critical slowing down indicators3–5, has changed during the period 2000–2020. We show that tropical, arid and temperate forests are experiencing a significant decline in resilience, probably related to increased water limitations and climate variability. By contrast, boreal forests show divergent local patterns with an average increasing trend in resilience, probably benefiting from warming and CO2 fertilization, which may outweigh the adverse effects of climate change. These patterns emerge consistently in both managed and intact forests, corroborating the existence of common large-scale climate drivers. Reductions in resilience are statistically linked to abrupt declines in forest primary productivity, occurring in response to slow drifting towards a critical resilience threshold. Approximately 23% of intact undisturbed forests, corresponding to 3.32 Pg C of gross primary productivity, have already reached a critical threshold and are experiencing a further degradation in resilience. Together, these signals reveal a widespread decline in the capacity of forests to withstand perturbation that should be accounted for in the design of land-based mitigation and adaptation plans.

Suggested Citation

  • Giovanni Forzieri & Vasilis Dakos & Nate G. McDowell & Alkama Ramdane & Alessandro Cescatti, 2022. "Emerging signals of declining forest resilience under climate change," Nature, Nature, vol. 608(7923), pages 534-539, August.
  • Handle: RePEc:nat:nature:v:608:y:2022:i:7923:d:10.1038_s41586-022-04959-9
    DOI: 10.1038/s41586-022-04959-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04959-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04959-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phyu Phyu Thinn & Yi Xie & Giuseppe T. Cirella & Aung Si Thu Thein, 2024. "Community Forestry Impacts on Local Livelihoods: A Difference-In-Differences Analysis in Mindon Township, Magway Region, Myanmar," International Journal of Sciences, Office ijSciences, vol. 13(08), pages 1-17, August.
    2. repec:caa:jnljfs:v:preprint:id:9-2024-jfs is not listed on IDEAS
    3. Xi Liu & Guoming Du & Xiaodie Zhang & Xing Li & Shining Lv & Yinghao He, 2024. "Vegetation Dynamics and Driving Mechanisms Considering Time-Lag and Accumulation Effects: A Case Study of Hubao–Egyu Urban Agglomeration," Land, MDPI, vol. 13(9), pages 1-17, August.
    4. Andreas Koutsodendris & Vasilis Dakos & William J. Fletcher & Maria Knipping & Ulrich Kotthoff & Alice M. Milner & Ulrich C. Müller & Stefanie Kaboth-Bahr & Oliver A. Kern & Laurin Kolb & Polina Vakhr, 2023. "Atmospheric CO2 forcing on Mediterranean biomes during the past 500 kyrs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Baker, Justin S. & Van Houtven, George & Phelan, Jennifer & Latta, Gregory & Clark, Christopher M. & Austin, Kemen G. & Sodiya, Olakunle E. & Ohrel, Sara B. & Buckley, John & Gentile, Lauren E. & Mart, 2023. "Projecting U.S. forest management, market, and carbon sequestration responses to a high-impact climate scenario," Forest Policy and Economics, Elsevier, vol. 147(C).
    6. I. Wayan Susi Dharmawan & Yunita Lisnawati & Hengki Siahaan & Bambang Tejo Premono & Mohamad Iqbal & Ahmad Junaedi & Niken Sakuntaladewi & Bastoni & Ridwan Fauzi & Ramawati & Ardiyanto Wahyu Nugroho &, 2024. "Use of an Adaptive-Vegetation Model to Restore Degraded Tropical Peat Swamp Forest to Support Climate Resilience," Land, MDPI, vol. 13(9), pages 1-21, August.
    7. Debojyoti Chakraborty & Albert Ciceu & Dalibor Ballian & Marta Benito Garzón & Andreas Bolte & Gregor Bozic & Rafael Buchacher & Jaroslav Čepl & Eva Cremer & Alexis Ducousso & Julian Gaviria & Jan Pet, 2024. "Assisted tree migration can preserve the European forest carbon sink under climate change," Nature Climate Change, Nature, vol. 14(8), pages 845-852, August.
    8. Coline C. F. Boonman & Josep M. Serra-Diaz & Selwyn Hoeks & Wen-Yong Guo & Brian J. Enquist & Brian Maitner & Yadvinder Malhi & Cory Merow & Robert Buitenwerf & Jens-Christian Svenning, 2024. "More than 17,000 tree species are at risk from rapid global change," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Naimah Alanazi, 2024. "Tree resources decline in Saudi Arabia: Climate change or pest attack causes?," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 70(5), pages 223-234.
    10. Benxu Wang & Xuanqin Yang & Yaquan Dou & Qingjun Wu & Guangyu Wang & Ya Li & Xiaodi Zhao, 2024. "Spatio-Temporal Dynamics of Economic Density and Vegetation Cover in the Yellow River Basin: Unraveling Interconnections," Land, MDPI, vol. 13(4), pages 1-22, April.
    11. Taylor Smith & Niklas Boers, 2023. "Global vegetation resilience linked to water availability and variability," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:608:y:2022:i:7923:d:10.1038_s41586-022-04959-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.