IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v204y2023icp430-449.html
   My bibliography  Save this article

A class of PSO-tuned controllers in Lorenz chaotic system

Author

Listed:
  • Dali, Ali
  • Abdelmalek, Samir
  • Bakdi, Azzeddine
  • Bettayeb, Maamar

Abstract

This paper considers the optimal robust control of chaotic systems subject to parameter perturbations and measurement noise. Three novel dynamic tracking controllers are designed herein to suppress the chaotic behaviour in Lorenz systems under practical constraints. The dynamic controllers allow for extra improvements towards optimal and robust tracking but their design is challenging in the chaotic system. Given a single measured state only, the single-state feedback controllers are optimally tuned using high-performance heuristic Particle Swarm Optimization (PSO) algorithm with a constrained multi-objective function focusing mainly on the Integral Absolute Error (IAE). The controlled system stability is ensured through Routh–Hurwitz stability criteria where control parameters are further tuned using a metaheuristic PSO algorithm to ensure faster transients with minimum errors when tracking desired state trajectories and also to ensure robustness to parameter variations and external disturbances in the chaotic system. Different designs are tested through extensive simulations and comparisons where the proposed PSO-tuned PD-tracking controller is proved superior for not only suppressing the chaotic behaviour and reducing the transients but also for their high robustness to parameter uncertainties and external disturbances.

Suggested Citation

  • Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2023. "A class of PSO-tuned controllers in Lorenz chaotic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 430-449.
  • Handle: RePEc:eee:matcom:v:204:y:2023:i:c:p:430-449
    DOI: 10.1016/j.matcom.2022.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422003627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koniakhin, S.V. & Bleu, O. & Malpuech, G. & Solnyshkov, D.D., 2020. "2D quantum turbulence in a polariton quantum fluid," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Gao, Richie, 2019. "A novel track control for Lorenz system with single state feedback," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 236-244.
    3. Yau, Her-Terng & Chen, Chieh-Li, 2007. "Chaos control of Lorenz systems using adaptive controller with input saturation," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1567-1574.
    4. Munmuangsaen, Buncha & Srisuchinwong, Banlue, 2018. "A hidden chaotic attractor in the classical Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 61-66.
    5. El-Gohary, Awad & Sarhan, Ammar, 2006. "Optimal control and synchronization of Lorenz system with complete unknown parameters," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1122-1132.
    6. Tutueva, Aleksandra V. & Nepomuceno, Erivelton G. & Karimov, Artur I. & Andreev, Valery S. & Butusov, Denis N., 2020. "Adaptive chaotic maps and their application to pseudo-random numbers generation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    7. Sprott, J.C. & Munmuangsaen, Buncha, 2018. "Comment on “A hidden chaotic attractor in the classical Lorenz system”," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 261-262.
    8. Jin, Maolin & Chang, Pyung Hun, 2009. "Simple robust technique using time delay estimation for the control and synchronization of Lorenz systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2672-2680.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Hui & Du, Shengzhi & Dong, Enzeng & Tong, Jigang, 2022. "Transient behaviors and equilibria-analysis-based boundary crisis analysis in a smooth 4D dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Faradja, Philippe & Qi, Guoyuan, 2020. "Analysis of multistability, hidden chaos and transient chaos in brushless DC motor," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Li, Chunbiao & Sprott, Julien Clinton & Zhang, Xin & Chai, Lin & Liu, Zuohua, 2022. "Constructing conditional symmetry in symmetric chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Peng, Xuenan & Zeng, Yicheng, 2020. "Image encryption application in a system for compounding self-excited and hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Wu, Qiujie & Hong, Qinghui & Liu, Xiaoyang & Wang, Xiaoping & Zeng, Zhigang, 2020. "A novel amplitude control method for constructing nested hidden multi-butterfly and multiscroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Cang, Shijian & Wang, Luo & Zhang, Yapeng & Wang, Zenghui & Chen, Zengqiang, 2022. "Bifurcation and chaos in a smooth 3D dynamical system extended from Nosé-Hoover oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Surendar, R. & Muthtamilselvan, M. & Ahn, Kyubok, 2024. "Stochastic disturbance with finite-time chaos stabilization and synchronization for a fractional-order nonautonomous hybrid nonlinear complex system via a sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Haghighatdar, F. & Ataei, M., 2009. "Adaptive set-point tracking of the Lorenz chaotic system using non-linear feedback," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1938-1945.
    10. Tutueva, Aleksandra V. & Karimov, Artur I. & Moysis, Lazaros & Volos, Christos & Butusov, Denis N., 2020. "Construction of one-way hash functions with increased key space using adaptive chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Shihong Zhang & Hu Shi & Baizhong Wang & Chunlu Ma & Qinghua Li, 2024. "A Dynamic Hierarchical Improved Tyrannosaurus Optimization Algorithm with Hybrid Topology Structure," Mathematics, MDPI, vol. 12(10), pages 1-35, May.
    12. Peng, Ya-Fu, 2009. "Robust intelligent sliding model control using recurrent cerebellar model articulation controller for uncertain nonlinear chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 150-167.
    13. Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Zelinka, Ivan & Senkerik, Roman & Navratil, Eduard, 2009. "Investigation on evolutionary optimization of chaos control," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 111-129.
    15. Yan, Yanjun & Chen, Kai & Zhao, Yijiu & Wang, Houjun & Xu, Bo & Wang, Yifan, 2024. "An innovative orthogonal matrix based on nonlinear chaotic system for compressive sensing," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    16. Dong, Youheng & Zhao, Geng, 2021. "A spatiotemporal chaotic system based on pseudo-random coupled map lattices and elementary cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    17. Belokolos, E.D. & Kharchenko, V.O. & Kharchenko, D.O., 2009. "Chaos in a generalized Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2595-2605.
    18. Tutueva, Aleksandra V. & Moysis, Lazaros & Rybin, Vyacheslav G. & Kopets, Ekaterina E. & Volos, Christos & Butusov, Denis N., 2022. "Fast synchronization of symmetric Hénon maps using adaptive symmetry control," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    19. Motaeb Eid Alshammari & Makbul A. M. Ramli & Ibrahim M. Mehedi, 2021. "A New Chaotic Artificial Bee Colony for the Risk-Constrained Economic Emission Dispatch Problem Incorporating Wind Power," Energies, MDPI, vol. 14(13), pages 1-24, July.
    20. Jin, Maolin & Chang, Pyung Hun, 2009. "Simple robust technique using time delay estimation for the control and synchronization of Lorenz systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2672-2680.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:204:y:2023:i:c:p:430-449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.