IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v632y2023ip1s0378437123008555.html
   My bibliography  Save this article

Designing networks with specific synchronization transitions independent of the system’s dynamics

Author

Listed:
  • Bayani, Atiyeh
  • Alexander, Prasina
  • Azarnoush, Hamed
  • Rajagopal, Karthikeyan
  • Jafari, Sajad
  • Nazarimehr, Fahimeh

Abstract

Synchronization transition, a phenomenon widely observed in various networks, can be classified into two types: explosive and continuous transitions. While the continuous transition is relatively well-understood, the underlying mechanisms of the explosive transition present a challenge to researchers. Most studies, however, pointed out the interaction between node dynamics and network topology as the fundamental feature of explosive synchronization in networks. In this study, we demonstrate the impact of Laplacian eigenvalue on the type of synchronization transition observed in complex systems. Through simulations, our results show that the sparsity of the Laplacian eigenvalues is the key to designing the synchronization transitions. The findings reveal that the sparse distributions lead to a jump in the evolution of the order parameter, explosive synchronization. Additionally, the nodes exhibit continuous synchronization in cases where the eigenvalues are broadly dispersed. This study examines three distinct chaotic systems – Chen, Rössler, and Lorenz – with five different Laplacian eigenvalue distributions. Surprisingly, the outcomes demonstrate that the synchronization transition is not mainly dependent on the internal dynamics of the nodes, highlighting a pivotal characteristic that can be used to design the precise control of complex networks.

Suggested Citation

  • Bayani, Atiyeh & Alexander, Prasina & Azarnoush, Hamed & Rajagopal, Karthikeyan & Jafari, Sajad & Nazarimehr, Fahimeh, 2023. "Designing networks with specific synchronization transitions independent of the system’s dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
  • Handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008555
    DOI: 10.1016/j.physa.2023.129300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123008555
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matteo Lodi & Francesco Sorrentino & Marco Storace, 2021. "One-way dependent clusters and stability of cluster synchronization in directed networks," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Shir Shahal & Ateret Wurzberg & Inbar Sibony & Hamootal Duadi & Elad Shniderman & Daniel Weymouth & Nir Davidson & Moti Fridman, 2020. "Synchronization of complex human networks," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Leonov, G.A. & Kuznetsov, N.V., 2015. "On differences and similarities in the analysis of Lorenz, Chen, and Lu systems," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 334-343.
    4. Yue Zhu & Chunhua Wang & Jingru Sun & Fei Yu, 2023. "A Chaotic Image Encryption Method Based on the Artificial Fish Swarms Algorithm and the DNA Coding," Mathematics, MDPI, vol. 11(3), pages 1-18, February.
    5. Juan Chen & Jun-an Lu & Choujun Zhan & Guanrong Chen, 2012. "Laplacian Spectra and Synchronization Processes on Complex Networks," Springer Optimization and Its Applications, in: My T. Thai & Panos M. Pardalos (ed.), Handbook of Optimization in Complex Networks, edition 1, chapter 0, pages 81-113, Springer.
    6. Zhan, Choujun & Chen, Guanrong & Yeung, Lam F., 2010. "On the distributions of Laplacian eigenvalues versus node degrees in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1779-1788.
    7. Bayani, Atiyeh & Jafari, Sajad & Azarnoush, Hamed & Nazarimehr, Fahimeh & Boccaletti, Stefano & Perc, Matjaž, 2023. "Explosive synchronization dependence on initial conditions: The minimal Kuramoto model," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    2. Li Xiong & Zhenlai Liu & Xinguo Zhang, 2017. "Dynamical Analysis, Synchronization, Circuit Design, and Secure Communication of a Novel Hyperchaotic System," Complexity, Hindawi, vol. 2017, pages 1-23, November.
    3. Guy Amichay & Liang Li & Máté Nagy & Iain D. Couzin, 2024. "Revealing the mechanism and function underlying pairwise temporal coupling in collective motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Alexeeva, Tatyana A. & Barnett, William A. & Kuznetsov, Nikolay V. & Mokaev, Timur N., 2020. "Dynamics of the Shapovalov mid-size firm model," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Tang, Longkun & Wang, Jiadong & Liang, Jianli, 2023. "Inter-layer synchronization on a two-layer network of unified chaotic systems: The role of network nodal dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Zhang, Fuchen, 2015. "On a model of the dynamical systems describing convective fluid motion in rotating cavity," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 873-882.
    7. Atiyeh Bayani & Fahimeh Nazarimehr & Sajad Jafari & Kirill Kovalenko & Gonzalo Contreras-Aso & Karin Alfaro-Bittner & Rubén J. Sánchez-García & Stefano Boccaletti, 2024. "The transition to synchronization of networked systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Martín-Hernández, J. & Wang, H. & Van Mieghem, P. & D’Agostino, G., 2014. "Algebraic connectivity of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 92-105.
    9. Fuchen Zhang & Rui Chen & Xiusu Chen, 2017. "Analysis of a Generalized Lorenz–Stenflo Equation," Complexity, Hindawi, vol. 2017, pages 1-6, December.
    10. Zhang, Fuchen & Shu, Yonglu, 2015. "Global dynamics for the simplified Lorenz system model," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 53-60.
    11. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    12. Hui, Nirmalendu & Biswas, Debabrata & Bandyopadhyay, Biswabibek & Chakraborty, Meenakshi & Banerjee, Tanmoy, 2024. "Filtering induced explosive death in coupled FitzHugh–Nagumo neurons: Theory and experiment," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Qasim M. Zainel & Saad M. Darwish & Murad B. Khorsheed, 2022. "Employing Quantum Fruit Fly Optimization Algorithm for Solving Three-Dimensional Chaotic Equations," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    14. Deyasi, Krishanu & Chakraborty, Abhijit & Banerjee, Anirban, 2017. "Network similarity and statistical analysis of earthquake seismic data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 224-234.
    15. Alexeeva, Tatyana A. & Kuznetsov, Nikolay V. & Mokaev, Timur N., 2021. "Study of irregular dynamics in an economic model: attractor localization and Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Huang, Changwei & Luo, Yijun & Han, Wenchen, 2023. "Cooperation and synchronization in evolutionary opinion changing rate games," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    17. Taheri, Alireza Ghomi & Setoudeh, Farbod & Tavakoli, Mohammad Bagher & Feizi, Esmaeil, 2022. "Nonlinear analysis of memcapacitor-based hyperchaotic oscillator by using adaptive multi-step differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    18. Zhang, Fuchen & Liao, Xiaofeng & Zhang, Guangyun, 2016. "On the global boundedness of the Lü system," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 332-339.
    19. Xu, Quan & Wang, Kai & Chen, Mo & Parastesh, Fatemeh & Wang, Ning, 2024. "Bursting and spiking activities in a Wilson neuron circuit with memristive sodium and potassium ion channels," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    20. Zizhao Xie & Jingru Sun & Yiping Tang & Xin Tang & Oluyomi Simpson & Yichuang Sun, 2023. "A K-SVD Based Compressive Sensing Method for Visual Chaotic Image Encryption," Mathematics, MDPI, vol. 11(7), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.