IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010774.html
   My bibliography  Save this article

Bionic firing activities in a dual mem-elements based CNN cell

Author

Listed:
  • Wu, Huagan
  • Gu, Jinxiang
  • Chen, Mo
  • Wang, Ning
  • Xu, Quan

Abstract

Firing activities provide the potential possibility for achieving bio-brain functionality with high energy-efficient and high-speed information processing performance. This inspires the design of bionic circuits to generate firing activities and develop brain-like applications. In this paper, a dual mem-elements based cellular neural network (CNN) cell is constructed to produce bionic firing activities, in which a non-ideal memcapacitor and an N-type locally active memristor are employed to emulate the functions of the neuronal membrane. The proposed CNN cell has an excitation-dependent equilibrium trajectory and stability. Numerical analysis shows that the dual mem-elements based CNN cell has abundant dynamical behaviors of forward/reverse period-doubling bifurcation routes, chaos crisis, tangent bifurcation, and bubbles with the change of model parameters of the CNN cell, memcapacitor, and exciting source. As a result, the rich firing patterns’ transition can be observed from the two-dimensional dynamics evolution. The analog circuit of the proposed CNN cell is designed, and then a PCB-based hardware circuit is implemented. The experimental results certify the accuracy of the theoretical and numerical analysis.

Suggested Citation

  • Wu, Huagan & Gu, Jinxiang & Chen, Mo & Wang, Ning & Xu, Quan, 2024. "Bionic firing activities in a dual mem-elements based CNN cell," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010774
    DOI: 10.1016/j.chaos.2024.115525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.