IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v184y2024ics096007792400506x.html
   My bibliography  Save this article

A practical leader–follower hybrid control scheme for wheeled mobile robots

Author

Listed:
  • He, Xinyi
  • Liu, Chang
  • Li, Xiaodi

Abstract

This paper addresses the problem of tracking control of wheeled mobile robots in leader–follower formation. By applying the backstepping technique, a hybrid control scheme consisting of continuous control and intermittent control is proposed, and leader–follower formation tracking is achieved in the presence of model uncertainty and external disturbance. A relationship between the intermittent control width and control gain and the convergence of the position errors is obtained for the tracking accuracy estimation. As a special case, the concerned intermittent control can be converted to impulsive control with a sufficiently small control width, and tracking of the trajectory can be realized by directly driving the state variables of the follower at well-designed discrete instants. The main novelty of the proposed hybrid control scheme is to drive the tracking errors into a preset region via intermittent control (or impulsive control) signals and then achieve the tracking goal in the practical sense via continuous control signals. An example with the corresponding numerical simulations and experimental tests is given to illustrate the effectiveness of the proposed method.

Suggested Citation

  • He, Xinyi & Liu, Chang & Li, Xiaodi, 2024. "A practical leader–follower hybrid control scheme for wheeled mobile robots," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s096007792400506x
    DOI: 10.1016/j.chaos.2024.114954
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792400506X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yang & Wang, Zhen & Chen, Mingshu & Kong, Lingyun, 2021. "Predefined-time sliding mode formation control for multiple autonomous underwater vehicles with uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Jiang, Xiaowei & Zhang, Ni & Li, Bo & Zhang, Xianhe, 2023. "Impulsive consensus of nonlinear multi-agent systems with input and state saturation constraints," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Eric Sihite & Arash Kalantari & Reza Nemovi & Alireza Ramezani & Morteza Gharib, 2023. "Multi-Modal Mobility Morphobot (M4) with appendage repurposing for locomotion plasticity enhancement," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Zhang, Sen & Wang, Xin & Zhou, Yuhao, 2023. "Model-based neuroadaptive event-triggered tracking consensus control for nonlinear multiagent systems with input delay," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Mikaberidze, Guram & Nag Chowdhury, Sayantan & Hastings, Alan & D’Souza, Raissa M., 2024. "Consensus formation among mobile agents in networks of heterogeneous interaction venues," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Jiaqi & Qin, Kaiyu & Li, Meng & Lin, Boxian & Shi, Mengji, 2024. "Robust finite/fixed-time bipartite flocking control for networked agents under actuator attacks and perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Gao, Shanshan & Zhang, Shenggui & Chen, Xinzhuang, 2023. "Effects of changing the weights of arcs on the consensus convergence rate of a leader–follower multi-agent system," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Mobayen, Saleh & Alattas, Khalid A. & Fekih, Afef & El-Sousy, Fayez F.M. & Bakouri, Mohsen, 2022. "Barrier function-based adaptive nonsingular sliding mode control of disturbed nonlinear systems: A linear matrix inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Khalid A. Alattas & Mai The Vu & Omid Mofid & Fayez F. M. El-Sousy & Abdullah K. Alanazi & Jan Awrejcewicz & Saleh Mobayen, 2022. "Adaptive Nonsingular Terminal Sliding Mode Control for Performance Improvement of Perturbed Nonlinear Systems," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
    5. Pu, Hao & Li, Fengjun, 2023. "Fixed/predefined-time synchronization of complex-valued discontinuous delayed neural networks via non-chattering and saturation control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    6. Zhang, Mengjiao & Zang, Hongyan & Bai, Luyuan, 2022. "A new predefined-time sliding mode control scheme for synchronizing chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. Zhang, Xin & Shi, Ran, 2022. "Novel fast fixed-time sliding mode trajectory tracking control for manipulator," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Zhang, Guodong & Cao, Jinde, 2023. "New results on fixed/predefined-time synchronization of delayed fuzzy inertial discontinuous neural networks: Non-reduced order approach," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    9. Jiang, Xiaowei & Zhang, Ni & Li, Bo & Zhang, Xianhe, 2023. "Impulsive consensus of nonlinear multi-agent systems with input and state saturation constraints," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s096007792400506x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.